Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 3 - MCQExams.com

cosxlog(cosx)dx=sinxlog(cosx)+log|secx+tanx|+f(x)+c, then f(x)=
  • sinx
  • cosx
  • tanx
  • cotx
lf f(x)dx=g(x) then x3f(x2)dx=
  • 12{x2g(x2)g(x2)dx2}
  • 12{x2g(x2)g(x2)dx}
  • 12{x2g(x2)+g(x2)dx2}
  • 12{x2g(x2)+g(x2)dx}
{f(x)g(x)f(x)g(x)}dx=
  • f(x)g(x)g(x)f(x)+c
  • g(x)f(x)f(x)g(x)+c
  • g(x)f(x)+f(x)g(x)+c
  • f(x)g(x)+c
(e3xdx)=
  • x2/32x1/3+2+c
  • (x2/32x1/3+2)exp(3x)+c
  • 3(x2/32x1/3+2)exp(3x)+c
  • 2(x2/32x1/3+2)exp(3x)+c
x.logxdx=
  • 23x3/2.logx49x3/2+c
  • 23x3/2.logx+x3/2+c
  • x3/2.(logx23)+c
  • 25x3/2(logx+1)+c
lf f(x)dx=g(x)+c, then f1(x)dx is equal to
  • xf1(x)+c
  • f[g1(x)]+c
  • xf1(x)g[f1(x)]+c
  • g1(x)+c
Evaluate esinxsin2xdx
  • 2esinx(sinx+1)+c
  • esinx(sinx+2)+c
  • esinx(2sinx2)+c
  • esinx(3sinx2)+c
xtanxsec2xdx=
  • 12[xtan2xtanx+x]+c
  • 12[xtan2xtanxx]+c
  • 12[xtan2x+tanxx]+c
  • xtan2xtanx+x+c
2x+sin2x1+cos2xdx=
  • xsin2x+c
  • xtanx+c
  • xsecx+c
  • xtanx+c
ex(3x2+7x+2)dx=
  • ex[3x2+x+1]+c
  • ex[3x2+7x+1]+c
  • ex[3x2xl]+c
  • ex[3x2+x]+c

Evaluate ex(logx+1x2)dx
  • ex logx +c
  • ex(logx1x)+c
  • ex(logx+1x)+c
  • exx2+c
x3cosx2dx=
  • x2sinx2cosx2+c
  • 12[x2sinx2+cosx2]+c
  • 13[x2sinx2+cosx2]+c
  • x2sinx2+cosx2+c
log(x2+a2)x2dx=
  • log(x2+a2)x+2atan1(xa)+c
  • log(x2+a2)x+2atan1(xa)+c
  • log(x2+a2)x2atan1(xa)+c
  • log(x2+a2)x2atanl(xa)+c
xsin1x1x2dx is equal to
  • x1x2sin1x+c
  • x+1x2sin1x+c
  • x+sin1x+c
  • xsin1x+c
esin1x[1+x1x2] dx =
  • xesin1x+c
  • esin1x+c
  • 11x2esin1x+c
  • x2esin1X+c
exdx=
  • 2ex(x+1)+c
  • 2ex(x1)+c
  • ex(x1)+c
  • ex(x+1)+c
tan11x1+xdx=
  • 12[xcos1x1x2]+c
  • [xcos1x1x2]+c
  • 12[xcos1x+1x2]+c
  • xcos1x+1x2+c
(A) : (2x tan x sec2x+tan2x)dx=xtan2x+c
(B) : [xf(x)+f(x)]dx=xf(x)+c
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true R is false
  • A is false but R is true.
xsinx1cosxdx=
  • log|1Cosx|+c
  • log|xsinx|+c
  • xtanx2+c
  • xcotx2+c
(logx)2dx=
  • x[(logx)22 logx +2]+c
  • x[(logx)2+2 logx +2]+c
  • [(logx)22 logx +2]+c
  • [(logx)2+2 logx +2]+c
xn.logxdx=
  • xn+1(n+1)2(logx1(n+1)2)+c
  • (logx1(n+1)2)+c
  • xn+1(n+1)(logx1(n+1))+c
  • xn+1(n+1)(logx1(n+1)2)+c
log(1x)x2dx equal to
  • [(1+1x)log(1x)logx]+c
  • (11x)log(1x)logx+c
  • (1x1)log(1x)+logx+c
  • (1x1)log(1x)logx+c
sinxdx=
  • 2(Sinxx.cosx)+c
  • 2(Sinx+x.cosx)+c
  • 2(Sinx12x.cosx)+c
  • 2(Sinx+12x.cosx)+c
32x3(logx)2dx is equal to
  • 8x4(logx)2+c
  • x4{8(logx)24logx+1}+c
  • x4{8(logx)24logx}+c
  • x3{(logx)2+2logx}+c
x3(logx)2dx=
  • x44[(logx)2logx2+18]+c
  • x44[(logx)2+logx2+18]+c
  • (logx)2+2logx+8+c
  • x44[(logx)2logx218]+c
sinx2+cos2x21+cosxdx=
  • secx2+x+c
  • secx2+x2+c
  • secx2x2+C
  • secx2X+C
Solve elogx.cosxdx
  • xsinxcosx+c
  • x2sinx+cosx+c
  • xsinx+cosx+c
  • xsinx+cos2x+c
cosx.log(cosx)dx=
  • sinxlog(cosx)log(cosx)+c
  • sinxlog(cosx)+secx+c
  • sinxlog(cosx)sinx+log|secx+tanx|+c
  • sinxlog(cosx)secx+c
x3sinx2dx=
  • 12sinx212x2cosx2+c
  • 12sinx2+12x2cosx2+c
  • sinx2x2cosx2+c
  • sinx212x2cosx2+c
Evaluate x.sec2x dx
  • xtanx+log|secx|+c
  • xtanxlog|secx|+c
  • x2tanxlog|secx|+c
  • x2tanx+log|secx|+c
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers