CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 3 - MCQExams.com

$$\displaystyle \int \cos x\log(\cos x) dx=\sin x \log(\cos x) + \log|\sec x+\tan x|+f(x)+c$$, then $$f(x)=$$
  • $$-\sin x$$
  • $$ \cos x$$
  • $$ \tan x$$
  • $$\cot x$$
lf $$\displaystyle \int f(x)dx=g(x)$$ then $$\displaystyle \int x^{3}f(x^{2})dx=$$
  • $$\dfrac{1}{2}\displaystyle \{x^{2}g(x^{2})-\int g(x^{2})dx^{2}\}$$
  • $$\dfrac{1}{2}\displaystyle \{x^{2}g(x^{2})-\int g(x^{2})dx\}$$
  • $$\dfrac{1}{2}\displaystyle \{x^{2}g(x^{2})+\int g(x^{2})dx^{2}\}$$
  • $$\dfrac{1}{2}\displaystyle \{x^{2}g(x^{2})+\int g(x^{2})dx\}$$
$$\displaystyle \int\{f(x)g''(x)-f''(x)g(x)\}dx=$$
  • $$f(x)g^{'} (x)-g(x)f^{'}(x) + c$$
  • $$g(x)f^{'}(x) - f(x)g^{'}(x) + c$$
  • $$g(x)f^{'}(x)+f(x)g^{'}(x) + c$$
  • $$f(x) g(x) + c$$
$$\displaystyle \int (e^\sqrt[3]{x}dx)=$$
  • $$x^{2/3}-2 x^{1/3} +2+c$$
  • $$(x^{2/3} - 2x^{1/3} +2)\exp(\sqrt[3]{x})+c$$
  • $$3(x^{2/3} - 2x^{1/3}+2)\exp(\sqrt[3]{x})+c$$
  • $$2(x^{2/3} - 2x^{1/3}+2)\exp(\sqrt[3]{x})+c$$
$$\displaystyle \int\sqrt{x}.\log xdx=$$
  • $$\displaystyle \frac{2}{3}x^{3/2}.\log x-\frac{4}{9}x^{3/2}+c$$
  • $$\displaystyle \frac{2}{3}x^{3/2}.\log x+x^{3/2}+c$$
  • $$x^{3/2}.(\displaystyle \log x-\frac{2}{3})+c$$
  • $$\displaystyle \frac{2}{5}x^{3/2}(\log x+1)+c$$
lf $$f(x)dx =g(x) +c$$, then $$\displaystyle \int f^{-1}(x)dx$$ is equal to
  • $$xf^{-1}(x) +c$$
  • $$f[g^{-1}(x)]+c$$
  • $$x f^{-1}(x)-g[f^{-1}(x)]+c$$
  • $$g^{-1}(x) +c$$
Evaluate $$\displaystyle \int e^{\sin x}\sin 2xdx$$
  • $$2e^{\sin x}(\sin x+1)+c$$
  • $$e^{\sin x}(\sin x+2)+c$$
  • $$e^{\sin x}(2\sin x-2)+c$$
  • $$e^{\sin x}(3\sin x -2)+c$$
$$\displaystyle \int x\tan x\sec^{2}xdx=$$
  • $$\displaystyle \frac{1}{2}[x\tan^{2} x-tanx +x]+c$$
  • $$\frac{1}{2}[x\tan^{2} x-tanx -x]+c$$
  • $$\displaystyle \frac{1}{2}[x\tan^{2}x+ tanx-x]+c$$
  • $$x\tan^{2} x-tanx+x+c$$
$$\displaystyle \int\frac{2x+sin2x}{1+cos2x}dx=$$
  • $$xsin2x+c$$
  • $$-xtanx+c$$
  • $$xsecx+c$$
  • $$xtanx+c$$
$$\displaystyle \int e^{x}(3x^{2}+7x+2)dx=$$
  • $$e^{x}[3x^{2}+x+1] +c$$
  • $$e^{x}[3x^{2}+7x+1] +c$$
  • $$e^{x}[3x^{2} - x- l] +c$$
  • $$e^{x}[3x^{2}+x]+c$$

Evaluate $$\displaystyle \int e^{x}(\log x+\frac{1}{x^{2}})dx$$
  • $$e^{x}$$ logx $$+c$$
  • $$\displaystyle e^{x}(\log x-\frac{1}{x})+c$$
  • $$\displaystyle e^{x}(\log x+\frac{1}{x})+c$$
  • $$\displaystyle \frac{e^{x}}{x^{2}}+c$$
$$\displaystyle \int x^{3} \cos x^{2}dx=$$
  • $$x^{2} \sin x^{2} -\cos x^{2}+c$$
  • $$\displaystyle \frac{1}{2} [ x^{2} \sin x^{2}+ \cos x^{2}] +c$$
  • $$\displaystyle \frac{1}{3} [ x^{2} \sin x^{2}+ \cos x^{2}] +c$$
  • $$x^{2} \sin x^{2}+ \cos x^{2}+c$$
$$\displaystyle \int\frac{\log(x^{2}+a^{2})}{x^{2}}dx =$$
  • $$\displaystyle \frac{-\log(x^{2}+a^{2})}{x}+\frac{2}{a}tan^{-1}(\frac{x}{a})+c$$
  • $$\displaystyle \frac{\log(x^{2}+a^{2})}{x}+\frac{2}{a}tan^{-1}(\frac{x}{a})+c$$
  • $$\displaystyle \frac{\log(x^{2}+a^{2})}{x}-\frac{2}{a}tan^{-1}(\frac{x}{a})+c$$
  • $$\displaystyle-\frac{\log(x^{2}+a^{2})}{x}-\frac{2}{a}tan^{-l}(\frac{x}{a})+c$$
$$\displaystyle \int\frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to
  • $$x-\sqrt{1-x^{2}}sin^{-1}x+c$$
  • $$x+\sqrt{1-x^{2}}sin^{-1}x+c$$
  • $$x+sin^{-1}x+c$$
  • $$x-sin^{-1}x+c$$
$$\displaystyle \int e^{sin^{-1}x}[1+\frac{x}{\sqrt{1-x^{2}}}]$$ dx $$=$$
  • $$xe^{sin^{-1}x}+c$$
  • $$e^{sin^{-1}x}+c$$
  • $$\displaystyle \frac{1}{\sqrt{1-x^{2}}}e^{\sin^{-1}x}+c$$
  • $$x^{2}e^{sin^{1}X}+c$$
$$\displaystyle \int e^\sqrt{x}dx=$$
  • $$2 e^\sqrt{x}(\sqrt{x}+1)+c$$
  • $$2 e^ \sqrt{x} \left( \sqrt{x}-1 \right) + c$$
  • $$e^ x (x - 1) + c$$
  • $$e ^x (x + 1) + c$$
$$\displaystyle \int tan^{-1}\sqrt{\frac{1-x}{1+x}}d{x}=$$
  • $$\displaystyle \frac{1}{2}[x cos^{-1} x-\sqrt{1-x^{2}}]+c$$
  • $$[xcos^{-1}x-\sqrt{1-x^{2}}]+c$$
  • $$\displaystyle \frac{1}{2}[x cos^{-1} x+\sqrt{1-x^{2}}]+c$$
  • $$x cos^{-1} x+\sqrt{1-x^{2}}+c$$
(A) : $$\displaystyle \int(2x$$ tan x $$\sec^{2}x+\tan^{2}x)dx=x\tan^{2}x+c$$
(B) : $$\displaystyle \int[xf^{'}(x)+f(x)]dx=xf(x)+c$$
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true R is false
  • A is false but R is true.
$$\displaystyle \int\frac{x-\sin x}{1-\cos x}dx=$$
  • $$log |1-Cosx | +c$$
  • $$log | x - sin x | +c$$
  • $$x\displaystyle \tan\frac{x}{2}+c$$
  • $$-x\displaystyle \cot\frac{x}{2}+c$$
$$\displaystyle \int(\log x)^{2}dx=$$
  • $$x[(\log x)^{2}-2$$ $$\log x$$ $$+2]+c$$
  • $$x[(\log x)^{2}+2$$ $$\log x$$ $$+2]+c$$
  • $$[(\log x)^{2}-2$$ $$\log x$$ $$+2]+c$$
  • $$[(\log x)^{2}+2$$ $$\log x$$ $$+2]+c$$
$$\displaystyle \int x^{n}.\log xdx=$$
  • $$\displaystyle \frac{x^{n+1}}{(n+1)^{2}}(\log x-\frac{1}{(n+1)^{2}})+c$$
  • $$(\displaystyle \log x-\frac{1}{(n+1)^{2}})+c$$
  • $$\displaystyle \frac{x^{n+1}}{(n+1)}(\log x-\frac{1}{(n+1)})+c$$
  • $$\displaystyle \frac{x^{n+1}}{(n+1)}(\log x-\frac{1}{(n+1)^{2}})+c$$
$$\displaystyle \int\frac{\log(1-x)}{x^{2}}dx$$ equal to
  • $$[(1+\displaystyle \frac{1}{x})\log(1-x)-\log x]+c$$
  • $$(1-\displaystyle \frac{1}{x})\log(1-x)-\log x+c$$
  • $$(\displaystyle \frac{1}{x}-1)\log(1-x)+\log x+c$$
  • $$(\displaystyle \frac{1}{x}-1)\log(1-x)-\log x+c$$
$$\int \sin \sqrt {x}dx =$$
  • $$2(Sin\sqrt {x} - \sqrt {x}.\cos \sqrt {x}) + c$$
  • $$2(Sin \sqrt {x} + \sqrt {x}.\cos \sqrt {x}) + c$$
  • $$2 (Sin \sqrt{x} -\dfrac {1}{2} \sqrt {x} .\cos \sqrt {x}) + c$$
  • $$2(Sin \sqrt {x} + \dfrac {1}{2} \sqrt {x} . \cos \sqrt {x}) + c$$
$$\displaystyle \int 32x^{3}(\log x)^{2}dx$$ is equal to
  • $$8x^{4}(\log x)^{2}+c$$
  • $$x^{4}\{8(\log x)^{2}-4\log x+1\}+c$$
  • $$x^{4}\{8(\log x)^{2}-4\log x\}+c$$
  • $$x^{3}\{(\log x)^{2}+2\log x\}+c$$
$$\displaystyle \int x^{3}(\log x)^{2}dx=$$
  • $$\displaystyle \frac{x^{4}}{4}[(\log x)^{2}-\frac{\log x}{2}+\frac{1}{8}]+c$$
  • $$\displaystyle \frac{x^{4}}{4}[(\log x)^{2}+\frac{\log x}{2}+\frac{1}{8}]+c$$
  • $$(\log x)^{2}+2 logx +8+c$$
  • $$\displaystyle \frac{x^{4}}{4}[(\log x)^{2}-\frac{\log x}{2}-\frac{1}{8}]+c$$
$$\int \displaystyle \frac{sin\frac{x}{2}+cos^{2}\frac{x}{2}}{1+cos x}dx=$$
  • $$\sec\frac{x}{2}+x+c$$
  • $$\displaystyle \sec\frac{x}{2}+\frac{x}{2}+c$$
  • $$\displaystyle\sec\frac{x}{2}-\frac{x}{2}+C$$
  • $$\displaystyle\sec\frac{x}{2}-X+C$$
Solve $$\displaystyle \int e^{\log x}.\cos xdx$$
  • $$x \sin x -cos x + c$$
  • $$\displaystyle \frac{x}{2}\sin x+\cos x+c$$
  • $$x \sin x + cos x + c$$
  • $$x \sin x + cos2 x + c$$
$$\displaystyle \int\cos x.\log(\cos x)dx=$$
  • $$sin x log (cos x) - log (cos x) + c$$
  • $$sin x log (cos x) + sec x + c$$
  • $$sin x log (cos x) - sin x + log |sec x + tan x| + c$$
  • $$sinx log (cosx) - sec x + c$$
$$\displaystyle \int x^{3} sin x^{2}dx=$$
  • $$\displaystyle \frac{1}{2}\sin x^{2}-\frac{1}{2}x^{2}\cos x^{2}+c$$
  • $$\displaystyle \frac{1}{2}\sin x^{2}+\frac{1}{2}x^{2}\cos x^{2}+c$$
  • $$\sin x^{2}-x^{2}\cos x^{2}+c$$
  • $$\displaystyle \sin x^{2}-\frac{1}{2}x^{2}\cos x^{2}+c$$
Evaluate $$\displaystyle \int x.\sec^{2}x \ dx$$
  • $$x \tan x + \log |\sec x| + c$$
  • $$x \tan x - \log |\sec x| + c$$
  • $$\displaystyle \frac{x}{2}\tan x-\log |\sec x|+c$$
  • $$\dfrac{x}{2}\tan x+\log|\sec x|+c$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers