Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 4 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Indefinite Integrals
Quiz 4
If
∫
x
log
(
1
+
1
x
)
d
x
=
f
(
x
)
log
(
x
+
1
)
+
g
(
x
)
.
x
2
+
L
x
+
c
, then
Report Question
0%
f
(
x
)
=
x
2
2
−
1
2
,
g
(
x
)
=
1
2
log
x
,
L
=
1
0%
f
(
x
)
=
x
2
2
+
1
2
,
g
(
x
)
=
−
1
2
log
x
,
L
=
1
2
0%
f
(
x
)
=
x
2
2
−
1
2
,
g
(
x
)
=
−
1
2
log
x
,
L
=
1
2
0%
f
(
x
)
=
x
2
2
−
1
2
,
g
(
x
)
=
1
2
log
x
,
L
=
−
1
2
Explanation
∫
x
log
(
1
+
1
x
)
d
x
.
=
log
(
1
+
1
x
)
⋅
x
2
2
−
∫
(
d
d
x
log
(
1
+
1
x
)
∫
x
d
x
)
⋅
d
x
=
log
(
1
+
1
x
)
⋅
x
2
2
−
∫
x
(
x
+
1
x
)
⋅
−
1
x
x
d
x
.
=
log
(
1
+
1
x
)
⋅
x
2
2
+
∫
x
x
+
1
⋅
d
x
.
=
log
(
1
+
1
x
)
⋅
x
2
2
+
x
−
log
(
x
+
1
)
.
=
[
log
(
1
+
x
)
]
x
2
2
∫
x
2
(
log
x
)
3
d
x
=
Report Question
0%
x
3
[
(
l
o
g
x
)
3
3
−
(
l
o
g
x
)
2
3
+
2
(
l
o
g
x
)
9
−
2
27
]
+
c
0%
x
3
[
(
log
x
)
3
3
+
(
log
x
)
2
3
+
2
(
log
x
)
9
+
2
27
]
+
c
0%
x
3
[
(
log
x
)
3
3
−
(
log
x
)
2
27
]
+
c
0%
x
3
[
(
log
x
)
3
3
+
(
log
x
)
2
3
+
2
(
log
x
)
9
−
2
27
]
+
c
Explanation
∫
x
2
(
l
o
g
x
)
3
d
x
=
(
l
o
g
x
)
3
∫
x
2
d
x
=
−
∫
(
d
d
x
(
l
o
g
x
)
3
.
∫
x
2
.
d
x
)
.
d
x
=
(
l
o
g
x
)
3
x
3
3
∫
3
(
l
o
g
x
)
2
−
1
/
x
.
x
2
/
3
d
x
(
l
o
g
x
)
3
x
3
3
−
∫
(
l
o
g
x
)
2
.
d
x
∫
x
2
(
l
o
g
x
)
2
=
(
l
o
g
x
)
2
x
3
3
−
∫
1
/
2
l
o
g
x
x
.
x
2
/
3
=
(
l
o
g
x
)
2
−
x
3
/
3
−
1
/
6
∫
l
o
g
x
.
x
2
∫
l
o
g
x
.
x
2
=
l
o
g
x
.
x
3
/
3
−
∫
1
/
x
x
2
/
3
d
x
=
l
o
g
x
−
x
3
/
3
−
x
3
/
q
+
c
=>
x
3
[
(
l
o
g
x
)
3
−
(
l
o
g
x
)
2
+
2
9
l
o
g
x
−
2
27
]
+
c
∫
x
s
i
n
2
x
d
x
Report Question
0%
x
2
4
−
cos
2
x
3
+
1
8
s
i
n
2
x
+
c
0%
x
2
4
−
x
s
i
n
2
x
4
−
1
8
c
o
s
2
x
+
c
0%
x
2
4
+
x
s
i
n
2
x
4
+
1
8
c
o
s
2
x
+
c
0%
−
x
2
4
−
c
o
s
2
x
3
+
1
8
c
o
s
2
x
+
c
Explanation
∫
x
s
i
n
2
x
d
x
.
=
x
∫
s
i
n
2
x
.
d
x
−
∫
(
∫
s
i
n
2
x
.
d
x
)
d
x
c
o
s
2
x
=
1
−
2
s
i
n
2
x
2
s
i
n
2
x
=
1
−
c
o
s
2
x
2
x
∫
(
1
−
c
o
s
2
x
2
)
d
x
−
∫
(
∫
(
1
−
c
o
s
2
x
2
)
.
d
x
)
d
x
.
=
x
2
[
x
−
1
/
2
s
i
n
2
x
]
−
∫
[
x
2
−
1
/
2
s
i
n
2
x
]
d
x
=
x
2
2
−
x
4
s
i
n
2
x
−
∫
[
x
2
4
+
1
4
c
o
s
2
x
]
=
x
2
4
−
x
s
i
n
2
x
4
−
1
8
c
o
s
2
x
+
c
∫
x
1
+
cos
x
d
x
=
Report Question
0%
x
tan
x
2
−
2
log
|
sec
x
/
2
|
+
c
0%
−
x
tan
x
/
2
−
1
2
log
|
sec
x
/
2
|
+
c
0%
x
tan
x
/
2
+
1
2
log
|
sec
x
/
2
|
+
c
0%
x
cot
x
/
2
−
1
2
log
|
csc
x
/
2
|
+
c
Explanation
∫
x
1
+
c
o
s
x
d
x
.
=
x
∫
1
1
+
c
o
s
x
d
x
−
∫
1
(
∫
1
1
+
c
o
s
x
d
x
)
d
x
∫
1
1
+
c
o
s
x
d
x
=
t
a
n
x
2
x
t
a
n
x
2
−
∫
t
a
n
x
2
.
d
x
.
x
t
a
n
x
2
+
2
l
o
g
|
c
o
s
x
|
+
c
=
x
t
a
n
x
2
−
2
l
o
g
|
s
e
c
x
2
|
+
c
Area bounded by
y
=
{
x
}
,
{
.
}
is fractional part of function and
x
=
±
1
is in sq. units
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Area
=
2
∫
1
0
x
d
x
=
2
[
x
2
2
]
1
0
=
2.
1
2
=
1
∫
c
o
s
(
log
x
)
d
x
=
Report Question
0%
x
[
c
o
s
(
log
x
)
−
s
i
n
(
log
x
)
]
+
c
0%
x
2
[
c
o
s
(
log
x
)
−
s
i
n
(
log
x
)
]
+
c
0%
log
x
2
[
c
o
s
x
+
s
i
n
x
]
+
c
0%
x
2
[
c
o
s
(
log
x
)
+
s
i
n
(
log
x
)
]
+
c
Explanation
∫
c
o
s
(
l
o
g
x
)
1
d
x
x
c
o
s
(
l
o
g
x
)
+
∫
(
s
i
n
(
l
o
g
x
)
x
⋅
x
)
d
x
=
x
c
o
s
(
l
o
g
x
)
+
∫
s
i
n
(
l
o
g
x
)
d
x
∫
s
i
n
(
l
o
g
x
)
d
x
=
x
s
i
n
(
l
o
g
x
)
+
∫
c
o
s
(
l
o
g
x
)
d
x
∫
c
o
s
(
l
o
g
x
)
d
x
=
x
c
o
s
(
l
o
g
x
)
+
x
s
i
n
(
l
o
g
x
)
−
∫
c
o
s
(
l
o
g
x
)
d
x
=
∫
c
o
s
(
l
o
g
x
)
d
x
=
x
2
[
c
o
s
(
l
o
g
x
)
+
s
i
n
(
l
o
g
x
)
]
+
c
.
∫
log
(
log
x
)
x
d
x
=
Report Question
0%
log
x
[
log
(
log
x
)
−
1
]
+
c
0%
x
[
log
(
log
x
)
+
1
]
+
c
0%
log
x
[
log
(
log
x
)
+
1
]
+
c
0%
x
[
log
(
log
x
)
−
1
]
+
c
Explanation
∫
l
o
g
(
l
o
g
x
)
x
d
x
=
l
o
g
(
l
o
g
x
)
(
l
o
g
x
)
−
∫
(
1
l
o
g
x
1
x
l
o
g
x
)
d
x
=
l
o
g
(
l
o
g
x
)
[
l
o
g
x
]
−
l
o
g
x
+
c
=
l
o
g
x
[
l
o
g
(
l
o
g
x
)
−
1
]
+
c
∫
2
m
x
.3
n
x
d
x
when
m
,
n
ϵ
N
is equal to:
Report Question
0%
2
m
x
+
3
n
x
m
ln
2
+
n
ln
3
+
c
0%
e
(
m
x
ln
2
+
n
x
ln
3
)
m
ln
2
+
n
ln
3
+
c
0%
2
m
x
.3
n
x
ln
(
2
m
⋅
3
n
)
+
c
0%
None of these
Explanation
Let,
I
=
∫
2
m
x
.3
n
x
d
x
Now put
2
m
=
a
,
3
n
=
b
⇒
I
=
∫
(
a
x
.
b
x
)
d
x
Now using by parts, by considering
a
x
as 1st function and
b
x
as 2nd function
⇒
I
=
a
x
b
x
ln
b
−
∫
a
x
ln
a
.
b
x
ln
b
d
x
+
k
⇒
I
=
a
x
b
x
ln
b
−
ln
a
ln
b
∫
a
x
b
x
d
x
+
k
⇒
I
=
a
x
b
x
ln
b
−
ln
a
ln
b
I
+
k
⇒
I
=
a
x
b
x
ln
a
+
ln
b
+
k
ln
b
ln
a
+
ln
b
⇒
I
=
a
x
b
x
ln
a
+
ln
b
+
c
, where
c
=
k
ln
b
ln
a
+
ln
b
∈
R
Hence option B,C are correct choice
lim
x
→
∞
∫
x
0
x
e
t
2
−
x
2
d
t
is equal to
Report Question
0%
2
0%
−
1
2
0%
1
2
0%
1
Explanation
lim
x
→
∞
∫
x
0
x
e
t
2
−
x
2
d
t
=
lim
x
→
∞
∫
x
0
x
e
t
2
e
x
2
d
t
=
lim
x
→
∞
∫
x
0
e
t
2
e
x
2
x
d
t
lim
x
→
∞
e
x
2
x
(
2
x
)
e
x
2
−
e
x
2
x
2
=
lim
x
→
∞
e
x
2
e
x
2
(
2
x
2
−
1
x
2
)
=
lim
x
→
∞
1
2
−
1
x
2
=
1
2
∫
sin
−
1
(
2
x
1
+
x
2
)
d
x
is equal to
Report Question
0%
2
(
x
tan
−
1
x
+
ln
|
cos
(
tan
−
1
x
)
|
)
+
C
0%
2
[
(
x
tan
−
1
x
)
2
+
ln
|
sec
(
tan
−
1
x
)
|
]
+
c
0%
2
[
(
x
tan
−
1
x
)
2
−
ln
|
cos
(
tan
−
1
x
)
|
]
+
c
0%
None of these
Explanation
I
=
∫
sin
−
1
(
2
x
1
+
x
2
)
d
x
Let
x
=
tan
θ
⟹
d
x
=
sec
2
θ
d
θ
∴
I
=
∫
sin
−
1
(
2
tan
θ
1
+
tan
2
θ
)
sec
2
θ
d
θ
=
∫
sin
−
1
(
2
sin
θ
cos
θ
1
+
sin
2
θ
cos
2
θ
)
sec
2
θ
d
θ
=
∫
sin
−
1
(
2
sin
θ
cos
θ
sin
2
θ
+
cos
2
θ
cos
2
θ
)
sec
2
θ
d
θ
=
∫
sin
−
1
(
2
sin
θ
cos
θ
)
sec
2
θ
d
θ
=
∫
sin
−
1
(
sin
2
θ
)
sec
2
θ
d
θ
=
2
∫
θ
sec
2
θ
d
θ
=
2
(
θ
tan
θ
+
ln
|
cos
θ
|
)
+
C
=
2
(
x
tan
−
1
x
+
ln
|
cos
(
tan
−
1
x
)
|
)
+
C
Ans: A
∫
e
t
a
n
−
1
x
[
1
+
x
+
x
2
1
+
x
2
]
d
x
=
Report Question
0%
x
2
e
tan
−
1
x
+
c
0%
x
e
tan
−
1
x
+
c
0%
e
tan
−
1
x
+
c
0%
1
2
e
tan
−
1
x
+
c
Explanation
Let
I
=
∫
e
tan
−
1
x
[
1
+
x
+
x
2
1
+
x
2
]
d
x
=
∫
e
tan
−
1
x
[
1
+
x
1
+
x
2
]
d
x
=
∫
[
e
tan
−
1
x
+
x
e
tan
−
1
x
1
+
x
2
]
d
x
For
f
(
x
)
=
e
tan
−
1
x
, above integral
I
reduces in the form of
∫
[
f
(
x
)
+
x
f
′
(
x
)
]
d
x
But we know that,
d
d
x
(
x
f
(
x
)
+
c
)
=
[
f
(
x
)
+
x
f
′
(
x
)
]
∴
∫
[
f
(
x
)
+
x
f
′
(
x
)
]
d
x
=
x
f
(
x
)
+
c
∴
I
=
x
e
tan
−
1
x
+
c
∴
I
=
∫
e
tan
−
1
x
[
1
+
x
+
x
2
1
+
x
2
]
d
x
=
x
e
tan
−
1
x
+
c
Hence, option 'B' is correct.
If
∫
x
2
e
−
2
x
d
x
=
e
−
2
x
(
a
x
2
+
b
x
+
c
)
+
d
then
Report Question
0%
a
=
−
1
2
0%
b
=
2
0%
c
=
−
1
4
0%
d
∈
R
Explanation
∫
x
2
e
−
2
x
d
x
=
e
−
2
x
(
a
x
2
+
b
x
+
c
)
+
d
Differentiating both sides, we get
x
2
e
−
2
x
=
e
−
2
x
(
2
a
x
+
b
)
+
(
a
x
2
+
b
x
+
c
)
(
−
2
e
−
2
x
)
x
2
e
−
2
x
=
e
−
2
x
(
−
2
a
x
2
+
2
(
a
−
b
)
x
+
b
−
2
c
)
On comparing the coefficients, we get
−
2
a
=
1
,
2
(
a
−
b
)
=
0
,
b
−
2
c
=
0
a
=
−
1
2
,
b
=
−
1
2
,
c
=
−
1
4
Also,
d
∈
R
∫
x
.
ln
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
equals
Report Question
0%
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
−
x
+
c
0%
x
2
.
ln
2
(
x
+
√
1
+
x
2
)
−
x
√
1
+
x
2
+
c
0%
x
2
.
ln
2
(
x
+
√
1
+
x
2
)
+
x
√
1
+
x
2
+
c
0%
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
+
x
+
c
Let
∫
e
x
{
f
(
x
)
−
f
′
(
x
)
}
d
x
=
ϕ
(
x
)
.
Then
∫
e
x
f
(
x
)
d
x
is
Report Question
0%
ϕ
(
x
)
=
e
x
f
(
x
)
0%
ϕ
(
x
)
−
e
x
f
(
x
)
0%
1
2
{
ϕ
(
x
)
+
e
x
f
(
x
)
}
0%
1
2
{
ϕ
(
x
)
+
e
x
f
′
(
x
)
}
Explanation
Given
∫
e
x
{
f
(
x
)
−
f
′
(
x
)
}
d
x
=
ϕ
(
x
)
.
...(1)
Consdier,
∫
e
x
{
f
(
x
)
−
f
′
(
x
)
}
d
x
=
∫
e
x
f
(
x
)
d
x
−
∫
e
x
f
′
(
x
)
d
x
=
e
x
f
(
x
)
−
2
∫
e
x
f
′
(
x
)
d
x
So, by (1),
e
x
f
(
x
)
−
2
∫
e
x
f
′
(
x
)
d
x
=
ϕ
(
x
)
∫
e
x
f
(
x
)
d
x
=
1
2
{
ϕ
(
x
)
+
e
x
f
(
x
)
}
∫
e
tan
x
(
sec
x
−
sin
x
)
d
x
is equal to
Report Question
0%
e
tan
x
cos
x
+
C
0%
e
tan
x
sin
x
+
C
0%
−
e
tan
x
cos
x
+
C
0%
e
tan
x
sec
x
+
C
Explanation
I
=
∫
e
tan
x
(
sec
x
−
sin
x
)
d
x
=
−
∫
sin
x
e
tan
x
d
x
+
∫
sec
x
e
tan
x
d
x
=
e
tan
x
cos
x
−
∫
cos
x
e
tan
x
sec
2
x
d
x
+
∫
sec
x
e
tan
x
d
x
=
cos
x
e
tan
x
+
C
∫
(
log
x
)
2
d
x
.
Report Question
0%
x
[
(
log
x
)
2
−
2
log
x
+
2
]
.
0%
x
[
(
log
x
)
2
−
2
log
x
+
1
]
.
0%
x
[
(
log
x
)
2
−
2
log
x
−
2
]
.
0%
x
[
(
log
x
)
2
+
2
log
x
−
2
]
.
Explanation
Integrating by parts,
I
=
x
(
log
x
)
2
−
2
∫
x
.
log
x
.
1
x
d
x
=
x
(
log
x
)
2
−
2
∫
log
x
d
x
=
x
(
log
x
)
2
−
2
[
x
log
x
−
x
]
=
x
[
(
log
x
)
2
−
2
log
x
+
2
]
.
∫
x
2
tan
−
1
x
d
x
.
Report Question
0%
x
3
3
tan
−
1
x
−
1
6
x
2
+
1
6
log
(
x
2
+
1
)
.
0%
x
3
3
tan
−
1
x
+
1
6
x
2
+
1
6
log
(
x
2
+
1
)
.
0%
x
3
3
tan
−
1
x
−
1
3
x
2
+
1
6
log
(
x
2
+
1
)
.
0%
x
3
3
tan
−
1
x
−
1
6
x
2
+
1
3
log
(
x
2
+
1
)
.
Explanation
Integrating by parts,
I
=
x
3
3
tan
−
1
x
−
1
3
∫
x
3
x
2
+
1
d
x
.
=
x
3
3
tan
−
1
x
−
1
3
∫
(
x
−
x
x
2
+
1
)
d
x
=
x
3
3
tan
−
1
x
−
1
6
x
2
+
1
6
log
(
x
2
+
1
)
+
c
.
∫
log
x
(
1
+
x
)
3
d
x
is equal to
Report Question
0%
log
x
(
1
+
x
)
2
+
1
2
log
x
x
+
1
+
1
2
1
x
+
1
+
c
0%
2
−
log
x
(
1
+
x
)
2
+
2
log
x
+
1
x
+
2
x
+
1
+
c
0%
−
2
log
x
(
1
+
x
)
2
+
2
log
x
x
+
1
+
2
x
+
1
+
c
0%
−
log
x
(
1
+
x
)
2
+
1
2
log
x
+
1
x
−
1
2
1
x
+
1
+
c
Explanation
I
=
∫
log
x
(
1
+
x
)
3
d
x
=
log
x
∫
1
(
1
+
x
)
3
d
x
−
∫
−
2
x
(
1
+
x
)
2
d
x
=
−
2
log
x
(
1
+
x
)
2
+
2
∫
1
x
(
1
+
x
)
2
d
x
Now,
1
x
(
1
+
x
)
2
=
A
x
+
B
(
1
+
x
)
+
C
(
1
+
x
)
2
⇒
1
=
A
(
1
+
x
)
2
+
B
x
(
1
+
x
)
+
C
x
When
x
=
−
1
,
C
=
−
1
When
x
=
0
,
A
=
1
When
x
=
1
,
B
=
−
1
So
1
x
(
1
+
x
)
2
=
1
x
−
1
(
1
+
x
)
−
1
(
1
+
x
)
2
∫
1
x
(
1
+
x
)
2
d
x
=
∫
1
x
d
x
−
∫
d
x
(
1
+
x
)
−
∫
d
x
(
1
+
x
)
2
=
log
x
−
log
(
x
+
1
)
+
1
(
x
+
1
)
So,
I
=
−
2
log
x
(
1
+
x
)
2
+
2
log
x
−
2
log
(
x
+
1
)
+
2
(
x
+
1
)
+
C
I
=
−
2
log
x
(
1
+
x
)
2
+
2
log
x
x
+
1
+
2
(
x
+
1
)
+
C
∫
x
sec
2
2
x
d
x
Report Question
0%
1
4
x
tan
2
x
−
1
2
log
sec
2
x
.
0%
1
2
x
tan
2
x
+
1
4
log
sec
2
x
.
0%
1
4
x
tan
2
x
−
1
4
log
sec
2
x
.
0%
1
2
x
tan
2
x
+
1
4
log
cos
2
x
.
Explanation
Let
I
=
∫
x
sec
2
2
x
d
x
=
1
2
x
tan
2
x
−
1
2
∫
tan
2
x
d
x
=
1
2
x
tan
2
x
−
1
4
log
sec
2
x
=
1
2
x
tan
2
x
+
1
4
log
cos
2
x
Hence, option 'D' is correct.
∫
(
log
x
)
2
d
x
.
Report Question
0%
x
(
log
x
)
2
+
2
x
log
x
+
2
x
0%
x
(
log
x
)
2
−
2
x
log
x
+
2
x
0%
x
(
log
x
)
2
−
2
x
log
x
0%
x
(
log
x
)
2
+
2
x
log
x
+
x
Explanation
I
=
∫
(
log
x
)
2
d
x
=
∫
1.
(
log
x
)
2
d
x
=
(
log
x
)
2
.
x
−
∫
2
(
log
x
)
.
1
x
.
x
d
x
=
x
(
log
x
)
2
−
2
∫
1.
log
x
d
x
=
x
(
log
x
)
2
−
2
[
x
log
x
−
∫
1
x
.
x
d
x
]
=
x
(
log
x
)
2
−
2
x
log
x
+
2
x
Hence, option 'B' is correct.
∫
[
(
1
+
x
)
e
x
f
(
x
)
+
x
e
x
f
′
(
x
)
]
d
x
=
e
x
,
then
f
(
x
)
=
Report Question
0%
1
0%
x
0%
1
/
x
0%
e
x
Explanation
d
d
x
(
x
e
x
)
=
(
1
+
x
)
e
x
∴
I
=
∫
f
(
x
)
d
x
+
∫
x
e
x
f
′
(
x
)
d
x
Integrating 1st by parts
x
e
x
f
(
x
)
−
∫
x
e
x
f
′
(
x
)
x
+
∫
x
e
x
f
′
(
x
)
d
x
=
x
e
x
f
(
x
)
=
e
x
∴
x
f
(
x
)
=
1
or
f
(
x
)
=
1
/
x
⇒
(
c
)
.
∫
cos
√
x
d
x
.
Report Question
0%
[
√
x
sin
√
x
+
cos
√
x
]
.
0%
2
[
sin
√
x
−
cos
√
x
]
.
0%
2
[
√
x
sin
√
x
+
√
x
cos
√
x
]
.
0%
2
[
√
x
sin
√
x
+
cos
√
x
]
.
Explanation
I
=
∫
cos
√
x
d
x
.
Put
√
x
=
t
so that
1
2
√
(
x
)
d
x
=
d
t
∴
I
=
f
(
cos
t
)
2
t
d
t
=
2
∫
t
cos
t
d
t
Integrating by parts, we get
I
=
2
[
t
sin
t
−
∫
1.
sin
t
d
t
]
=
2
[
t
sin
t
+
cos
t
]
=
2
[
√
x
sin
√
x
+
cos
√
x
]
.
Hence, option 'D' is correct.
I
=
∫
e
x
[
1
+
√
1
−
x
2
sin
−
1
x
√
(
1
−
x
2
)
]
d
x
Report Question
0%
−
e
−
x
sin
−
1
x
+
c
0%
−
e
x
cos
−
1
x
+
c
0%
e
−
x
cos
−
1
x
+
c
0%
e
x
sin
−
1
x
+
c
Explanation
I
=
∫
e
x
[
1
+
√
1
−
x
2
sin
−
1
x
√
(
1
−
x
2
)
]
d
x
=
∫
e
x
.
1
√
(
1
−
x
2
)
d
x
+
∫
e
x
sin
−
1
x
d
x
.
Integrate 1st by parts
I
=
e
x
.
sin
−
1
x
−
∫
e
x
sin
−
1
x
d
x
+
∫
e
x
sin
−
1
x
d
x
I
=
e
x
sin
−
1
x
.
The last two integrals cancel.
Note : Above is also of the form
∫
e
x
[
f
(
x
)
+
f
′
(
x
)
d
x
=
e
x
f
(
x
)
]
f
(
x
)
=
sin
−
1
x
and
f
′
(
x
)
=
1
√
(
1
−
x
2
)
.
∫
x
1
+
cos
x
d
x
.
Report Question
0%
x
tan
(
x
/
2
)
−
2
log
sec
(
x
/
2
)
.
0%
tan
(
x
/
2
)
−
2
log
sec
(
x
/
2
)
.
0%
x
tan
(
x
/
2
)
+
2
log
sec
(
x
/
2
)
.
0%
x
tan
(
x
/
2
)
−
log
sec
(
x
/
2
)
.
Explanation
I
=
∫
x
1
+
cos
x
d
x
=
∫
x
2
cos
2
(
x
/
2
)
d
x
∫
x
[
1
2
sec
2
x
2
]
d
x
=
x
tan
x
2
−
∫
1.
tan
x
2
d
x
=
x
tan
(
x
/
2
)
−
2
log
sec
(
x
/
2
)
.
Hence, option 'A' is correct.
∫
sin
x
log
(
sec
x
+
tan
x
)
d
x
.
Report Question
0%
cos
x
log
(
sec
x
+
tan
x
)
−
x
2
+
c
0%
sin
x
log
(
sec
x
+
tan
x
)
−
x
+
c
0%
−
cos
x
log
(
sec
x
+
tan
x
)
−
x
+
c
0%
−
sec
x
log
(
sec
x
+
tan
x
)
−
x
2
+
c
Explanation
I
=
∫
sin
x
log
(
sec
x
+
tan
x
)
d
x
I
=
(
−
cos
x
)
log
(
sec
x
+
tan
x
)
−
∫
[
d
d
x
log
(
sec
x
+
tan
x
)
.
(
−
cos
x
)
]
d
x
.
Now
∫
sec
x
d
x
=
log
(
sec
x
+
tan
x
)
;
∴
d
d
x
log
(
sec
x
+
tan
x
)
=
sec
x
∴
I
=
−
cos
x
log
(
sec
x
+
tan
x
)
−
∫
sec
x
(
−
cos
x
)
d
x
=
−
cos
x
log
(
sec
x
+
tan
x
)
−
∫
1
d
x
=
−
cos
x
log
(
sec
x
+
tan
x
)
−
x
+
c
Hence, option 'C' is correct.
Solve
∫
e
x
1
−
sin
x
1
−
cos
x
d
x
Report Question
0%
−
e
x
cot
(
x
2
)
0%
−
e
x
tan
(
x
2
)
0%
e
x
tan
(
x
2
)
0%
e
x
cot
(
x
2
)
Explanation
I
=
∫
e
x
(
1
−
sin
x
)
(
1
−
cos
x
)
d
x
I
=
∫
[
e
x
2
sin
2
(
x
/
2
)
−
e
x
2
sin
(
x
/
2
)
cos
(
x
/
2
)
2
/
s
i
n
2
(
x
/
2
)
]
d
x
=
∫
e
x
(
1
2
c
o
sec
2
x
2
)
d
x
−
∫
e
x
cot
x
2
d
x
.
Integrate first by parts
∴
I
=
e
x
(
−
cot
x
2
)
−
∫
e
x
(
−
cot
x
2
)
d
x
−
∫
e
x
cot
x
2
d
x
=
−
e
x
cot
(
x
2
)
The last two integrals cancel.
∫
4
x
[
g
′
(
x
)
+
g
(
x
)
log
4
]
d
x
=
Report Question
0%
4
x
log
4
g
(
x
)
0%
4
x
0%
4
x
log
4.
g
(
x
)
0%
4
x
g
(
x
)
Explanation
∫
4
x
[
g
′
(
x
)
+
g
(
x
)
log
4
]
d
x
I
=
∫
4
x
g
′
(
x
)
d
x
+
∫
g
(
x
)
4
x
log
4
d
x
=
4
x
g
(
x
)
−
∫
(
4
x
log
4
∫
g
′
(
x
)
d
x
)
d
x
+
∫
g
(
x
)
4
x
log
4
d
x
=
4
x
g
(
x
)
−
∫
(
4
x
log
4
g
(
x
)
d
x
+
∫
g
(
x
)
4
x
log
4
d
x
∴
I
=
4
x
g
(
x
)
+
C
∫
x
1
+
sec
x
d
x
.
Report Question
0%
x
2
2
+
x
tan
x
2
+
2
log
sec
x
2
0%
x
2
2
−
x
tan
x
2
+
2
log
sec
x
2
0%
x
2
2
−
tan
x
2
+
2
log
sec
x
2
0%
x
2
2
−
x
tan
x
2
−
2
log
sec
x
2
Explanation
I
=
∫
x
sec
x
+
1
d
x
=
∫
x
cos
x
1
+
cos
x
d
x
=
∫
x
1
+
cos
x
−
1
1
+
cos
x
d
x
=
∫
(
x
−
x
2
cos
2
(
x
/
2
)
)
d
x
I
=
x
2
2
−
x
tan
x
2
+
2
log
sec
x
2
∫
c
o
sec
2
x
−
203
(
cos
x
)
203
d
x
Report Question
0%
−
cot
x
(
cos
x
)
203
0%
cos
x
(
c
o
sec
x
)
203
0%
−
tan
x
(
c
o
sec
x
)
203
0%
cot
x
(
sin
x
)
203
Explanation
∫
(
cos
−
203
x
)
c
o
sec
2
x
d
x
−
∫
203
(
cos
x
)
203
d
x
=
I
1
−
I
2
Integrate
I
1
by parts
∴
I
1
=
(
cos
−
203
x
)
(
−
cot
x
)
−
∫
cot
x
.203
cos
−
204
x
(
−
sin
x
)
d
x
I
1
=
−
cot
x
(
cos
x
)
203
+
∫
203
(
cos
x
)
203
d
x
+
C
∴
I
1
−
I
2
=
−
cot
x
(
cos
x
)
203
+
C
∫
a
x
[
log
x
+
log
a
log
(
x
x
e
x
)
]
d
x
Report Question
0%
x
(
log
x
−
1
)
0%
a
x
.
x
(
log
x
−
1
)
0%
a
x
.
x
(
log
x
+
1
)
0%
a
x
.
(
log
x
−
1
)
Explanation
I
=
∫
a
x
log
x
d
x
+
∫
(
a
x
log
a
)
.
x
(
log
x
−
1
)
d
x
We know that
∫
log
x
d
x
=
x
log
x
−
∫
x
.
1
x
d
x
=
x
(
log
x
−
1
)
Integrating 1st term by parts,
∴
I
=
a
x
.
x
(
log
x
−
1
)
−
∫
x
(
log
x
−
1
)
(
a
x
log
a
)
d
x
+
∫
(
a
x
.
log
a
)
.
x
(
log
x
−
1
)
d
x
=
a
x
.
x
(
log
x
−
1
)
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page