Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 4 - MCQExams.com

If x log(1+1x)dx= f(x)log(x+1)+g(x).x2+Lx+c, then
  • f(x)=x2212, g(x)=12logx, L=1
  • f(x)=x22+12,g(x)=12logx,L=12
  • f(x)=x2212,g(x)=12logx,L=12
  • f(x)=x2212,g(x)=12logx, L=12
x2(logx)3dx=
  • x3[(logx)33(logx)23+2(logx)9227]+c
  • x3[(logx)33+(logx)23+2(logx)9+227]+c
  • x3[(logx)33(logx)227]+c
  • x3[(logx)33+(logx)23+2(logx)9227]+c
xsin2xdx
  • x24cos2x3+18sin2x+c
  • x24xsin2x418cos2x+c
  • x24+xsin2x4+18cos2x+c
  • x24cos2x3+18cos2x+c
x1+cosxdx=
  • xtanx22log|secx/2|+c
  • xtanx/212log|secx/2|+c
  • xtanx/2+12log|secx/2|+c
  • xcotx/212log|cscx/2|+c

Area bounded by y={x},{.} is fractional part of function and x=±1 is in sq. units
  • 1
  • 2
  • 3
  • 4
cos(logx)dx=
  • x[cos(logx)sin(logx)]+c
  • x2[cos(logx)sin(logx)]+c
  • logx2[cosx+sinx]+c
  • x2[cos(logx)+sin(logx)]+c
log(logx)xdx=
  • logx[log(logx)1]+c
  • x[log(logx)+1]+c
  • logx[log(logx)+1]+c
  • x[log(logx)1]+c
2mx.3nxdx when m,nϵN is equal to:
  • 2mx+3nxmln2+nln3+c
  • e(mxln2+nxln3)mln2+nln3+c
  • 2mx.3nxln(2m3n)+c
  • None of these
limxx0xet2x2dt is equal to
  • 2
  • 12
  • 12
  • 1
sin1(2x1+x2)dx is equal to
  • 2(xtan1x+ln|cos(tan1x)|)+C
  • 2[(xtan1x)2+ln|sec(tan1x)|]+c
  • 2[(xtan1x)2ln|cos(tan1x)|]+c
  • None of these
etan1x[1+x+x21+x2]dx=
  • x2etan1x+c
  • xetan1x+c
  • etan1x+c
  • 12etan1x+c
If x2e2xdx=e2x(ax2+bx+c)+d then
  • a=12
  • b=2
  • c=14
  • dR
x.ln(x+1+x2)1+x2dx equals
  • 1+x2ln(x+1+x2)x+c
  • x2.ln2(x+1+x2)x1+x2+c
  • x2.ln2(x+1+x2)+x1+x2+c
  • 1+x2ln(x+1+x2)+x+c
Let ex{f(x)f(x)}dx=ϕ(x). Then exf(x)dx is 
  • ϕ(x)=exf(x)
  • ϕ(x)exf(x)
  • 12{ϕ(x)+exf(x)}
  • 12{ϕ(x)+exf(x)}
etanx(secxsinx)dx is equal to
  • etanxcosx+C
  • etanxsinx+C
  • etanxcosx+C
  • etanxsecx+C
(logx)2dx.
  • x[(logx)22logx+2].
  • x[(logx)22logx+1].
  • x[(logx)22logx2].
  • x[(logx)2+2logx2].
x2tan1xdx.
  • x33tan1x16x2+16log(x2+1).
  • x33tan1x+16x2+16log(x2+1).
  • x33tan1x13x2+16log(x2+1).
  • x33tan1x16x2+13log(x2+1).
logx(1+x)3dx is equal to
  • logx(1+x)2+12logxx+1+121x+1+c
  • 2logx(1+x)2+2logx+1x+2x+1+c
  • 2logx(1+x)2+2logxx+1+2x+1+c
  • logx(1+x)2+12logx+1x121x+1+c
xsec22xdx
  • 14xtan2x12logsec2x.
  • 12xtan2x+14logsec2x.
  • 14xtan2x14logsec2x.
  • 12xtan2x+14logcos2x.
(logx)2dx.
  • x(logx)2+2xlogx+2x
  • x(logx)22xlogx+2x
  • x(logx)22xlogx
  • x(logx)2+2xlogx+x
[(1+x)exf(x)+xexf(x)]dx=ex, then f(x)=
  • 1
  • x
  • 1/x
  • ex
cosxdx.
  • [xsinx+cosx].
  • 2[sinxcosx].
  • 2[xsinx+xcosx].
  • 2[xsinx+cosx].
I=ex[1+1x2sin1x(1x2)]dx
  • exsin1x+c
  • excos1x+c
  • excos1x+c
  • exsin1x+c
x1+cosxdx.
  • xtan(x/2)2logsec(x/2).
  • tan(x/2)2logsec(x/2).
  • xtan(x/2)+2logsec(x/2).
  • xtan(x/2)logsec(x/2).
sinxlog(secx+tanx)dx.
  • cosxlog(secx+tanx)x2+c
  • sinxlog(secx+tanx)x+c
  • cosxlog(secx+tanx)x+c
  • secxlog(secx+tanx)x2+c
Solve ex1sinx1cosxdx
  • excot(x2)
  • extan(x2)
  • extan(x2)
  • excot(x2)
4x[g(x)+g(x)log4]dx=
  • 4xlog4g(x)
  • 4x
  • 4xlog4.g(x)
  • 4xg(x)
x1+secxdx.
  • x22+xtanx2+2logsecx2
  • x22xtanx2+2logsecx2
  • x22tanx2+2logsecx2
  • x22xtanx22logsecx2
cosec2x203(cosx)203dx
  • cotx(cosx)203
  • cosx(cosecx)203
  • tanx(cosecx)203
  • cotx(sinx)203
ax[logx+logalog(xxex)]dx
  • x(logx1)
  • ax.x(logx1)
  • ax.x(logx+1)
  • ax.(logx1)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers