CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 4 - MCQExams.com

If $$\displaystyle \int x$$ log$$\displaystyle (1+\frac{1}{x})dx =$$ $$f(x)\log(x+1)+g(x).x^{2}+Lx+c$$, then
  • $$f(x) =\displaystyle \frac{x^{2}}{2}-\frac{1}{2},\ g(x) =\displaystyle \frac{1}{2}\log x,\ L=1$$
  • $$f(x) =\displaystyle \frac{x^{2}}{2}+\frac{1}{2},g(x)=-\frac{1}{2}\log x,L=\frac{1}{2}$$
  • $$f(x)=\displaystyle \frac{x^{2}}{2}-\frac{1}{2},g(x)=-\frac{1}{2}\log x,L=\frac{1}{2}$$
  • $$f(x) =\displaystyle \frac{x^{2}}{2}-\frac{1}{2},g(x)=\frac{1}{2}\log x,\ L=-\displaystyle \frac{1}{2}$$
$$\displaystyle \int x^{2}(\log x)^{3}dx=$$
  • $$\displaystyle x^{3}\left[ \frac { (logx)^{ 3 } }{ 3 } -\frac { (logx)^{ 2 } }{ 3 } +\frac { 2(logx) }{ 9 } -\frac { 2 }{ 27 } \right] +c$$
  • $$\displaystyle x^{3}\left[ \frac { (\log x)^{ 3 } }{ 3 } +\frac { (\log x)^{ 2 } }{ 3 } +\frac { 2(\log x) }{ 9 } +\frac { 2 }{ 27 } \right] +c$$
  • $$\displaystyle x^{3}\left[ \frac { (\log x)^{ 3 } }{ 3 } -\frac { (\log x)^{ 2 } }{ 27 } \right] +c$$
  • $$\displaystyle x^{3}\left[ \frac { (\log x)^{ 3 } }{ 3 } +\frac { (\log x)^{ 2 } }{ 3 } +\frac { 2(\log x) }{ 9 } -\frac { 2 }{ 27 } \right] +c$$
$$\displaystyle \int xsin^{2}xdx$$
  • $$\displaystyle \frac{x^{2}}{4}-\frac{\cos 2x}{3}+\frac{1}{8}sin2x +c$$
  • $$\displaystyle \frac{x^{2}}{4}-\frac{xsin2x}{4}-\frac{1}{8}cos2x +c$$
  • $$\displaystyle \frac{x^{2}}{4}+\frac{xsin2x}{4}+\frac{1}{8}cos2x +c$$
  • $$\displaystyle \frac{-x^{2}}{4}-\frac{cos2x}{3}+\frac{1}{8}cos2x +c$$
$$\displaystyle \int\frac{x}{1+\cos x}dx=$$
  • $$x\tan \frac{x}{2}-2\log|\sec x/2|+c$$
  • $$-x\tan x/2-\displaystyle \frac{1}{2}\log|\sec x/2|+c$$
  • $$x\tan x/2+\displaystyle \frac{1}{2}\log|\sec x/2|+c$$
  • $$x\cot x/2-\displaystyle \frac{1}{2}\log|\csc x/2|+c$$

Area bounded by $$\mathrm{y}=\{\mathrm{x}\},\{.\}$$ is fractional part of function and $$\mathrm{x}=\pm 1$$ is in sq. units
  • 1
  • 2
  • 3
  • 4
$$\displaystyle \int cos(\log x)dx=$$
  • $$x[cos(\log x)-sin(\log x)]+c$$
  • $$\displaystyle \frac{x}{2}[cos(\log x)-sin(\log x)]+c$$
  • $$\displaystyle \frac{\log x}{2}[cosx+sinx]+c$$
  • $$\dfrac{x}{2}[cos(\log x)+sin(\log x)]+c$$
$$\displaystyle \int\frac{\log(\log x)}{x}dx=$$
  • $$\displaystyle \log x[\log(\log x)-1]+c$$
  • $$\displaystyle x[\log(\log x)+1]+c$$
  • $$\displaystyle \log x[\log(\log x)+1]+c$$
  • $$\displaystyle x[\log(\log x)-1]+c$$
$$\displaystyle \int 2^{mx}.3^{nx}dx$$ when $$m,n\epsilon N$$ is equal to:
  • $$\displaystyle \frac{2^{mx}+3^{nx}}{m \ln 2+n\ln 3}+c$$
  • $$\displaystyle\frac{e^{(mx\ln2+nx\ln3)}}{m\ln2+n\ln3}+c$$
  • $$\displaystyle\frac{2^{mx}.3^{nx}}{\ln(2^{m}\cdot 3^{n})}+c$$
  • None of these
$$ \underset {x\to \infty}\lim \int_{0}^{x}xe^{t^{2}-x^{2}}dt$$ is equal to
  • $$2$$
  • $$\displaystyle -\frac{1}{2}$$
  • $$\displaystyle \frac{1}{2}$$
  • $$1$$
$$\displaystyle \int \sin^{-1}\left ( \frac{2x}{1+x^2} \right )dx$$ is equal to
  • $$\displaystyle 2(x \tan^{-1} x +\ln \left | \cos (\tan^{-1}x) \right |)+C$$
  • $$2[(\displaystyle x\tan^{-1}{x})^2+\ln \left | \sec (\tan^{-1}x) \right |]+c$$
  • $$2[(\displaystyle x\tan^{-1}{x})^2-\ln \left | \cos (\tan^{-1}x) \right |]+c$$
  • None of these
$$\displaystyle \int e^{tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=$$
  • $$\displaystyle x^{2}e^{\tan^{-1}x}+c$$
  • $$\displaystyle x e^{\tan^{-1}x}+c$$
  • $$\displaystyle e^{\tan^{-1}x}+c$$
  • $$\displaystyle \frac{1}{2}e^{\tan^{-1}x}+c$$
If $$\displaystyle  \int x^{2}e^{-2x}dx=e^{-2x}(ax^{2}+bx+c)+d$$ then
  • $$a=-\displaystyle \frac {1}{2}$$
  • $$b=2$$
  • $$c=-\displaystyle \frac{1}{4}$$
  • $$d\in R$$
$$\displaystyle \int x.\frac{\ln \left ( x+\sqrt{1+x^2} \right )}{\sqrt{1+x^2}} dx$$ equals
  • $$\sqrt{1+x^2}\ln \left ( x+\sqrt{1+x^2} \right )-x+c$$
  • $$\displaystyle \frac{x}{2}.\ln^2\left ( x+\sqrt{1+x^2} \right )-\displaystyle \frac{x}{\sqrt{1+x^2}}+c$$
  • $$\displaystyle \frac{x}{2}.\ln^2\left ( x+\sqrt{1+x^2} \right )+\displaystyle \frac{x}{\sqrt{1+x^2}}+c$$
  • $$\sqrt{1+x^2}\ln \left ( x+\sqrt{1+x^2} \right )+x+c$$
Let $$\displaystyle \int e^{x}\left \{ f(x)-f'(x) \right \}dx=\phi (x).$$ Then $$\int e^{x} f(x)dx$$ is 
  • $$\displaystyle \phi (x)=e^{x}f(x)$$
  • $$\displaystyle \phi (x)-e^{x}f(x)$$
  • $$\displaystyle \frac{1}{2}\left \{ \phi (x)+e^{x}f(x) \right \}$$
  • $$\displaystyle \frac{1}{2}\left \{ \phi (x)+e^{x}f'(x) \right \}$$
$$\displaystyle \int e^{\displaystyle \tan x}(\sec x-\sin x)dx$$ is equal to
  • $$\displaystyle e^{\displaystyle \tan x}\cos x+C$$
  • $$\displaystyle e^{\displaystyle \tan x}\sin x+C$$
  • $$\displaystyle -e^{\displaystyle \tan x}\cos x+C$$
  • $$\displaystyle e^{\displaystyle \tan x}\sec x+C$$
$$\displaystyle \int \left ( \log x \right )^{2}dx.$$
  • $$\displaystyle x \left [\left ( \log x \right )^{2}-2 \log x+2 \right ].$$
  • $$\displaystyle x \left [\left ( \log x \right )^{2}-2 \log x+1 \right ].$$
  • $$\displaystyle x \left [\left ( \log x \right )^{2}-2 \log x-2 \right ].$$
  • $$\displaystyle x \left [\left ( \log x \right )^{2}+2 \log x-2 \right ].$$
$$\displaystyle \int x^{2}\tan ^{-1}x\:dx.$$
  • $$\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$$
  • $$\displaystyle \frac{x^{3}}{3}\tan^{-1}x+\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$$
  • $$\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{3}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$$
  • $$\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{3}\log\left ( x^{2}+1 \right ).$$
$$\displaystyle \int\frac{\log x}{(1+x)^{3}}dx$$ is equal to
  • $$\displaystyle \frac{\log x}{(1+x)^{2}}+\displaystyle \frac{1}{2}\log\frac{x}{x+1}+\frac{1}{2}\frac{1}{x+1}+c$$
  • $$\displaystyle 2\frac{-\log x}{(1+x)^{2}}+\displaystyle 2\log\frac{x+1}{x}+\frac{2}{x+1}+c$$
  • $$\displaystyle \frac{-2\log x}{(1+x)^{2}}+\displaystyle 2\log\frac{x}{x+1}+\frac{2}{x+1}+c$$
  • $$\displaystyle \frac{-\log x}{(1+x)^{2}}+\displaystyle \frac{1}{2}\log\frac{x+1}{x}-\frac{1}{2}\frac{1}{x+1}+c$$
$$\displaystyle \int x\sec^{2}2xdx$$
  • $$\displaystyle \frac{1}{4}x\tan 2x-\frac{1}{2}\log \sec 2x.$$
  • $$\displaystyle \frac{1}{2}x\tan 2x+\frac{1}{4}\log \sec 2x.$$
  • $$\displaystyle \frac{1}{4}x\tan 2x-\frac{1}{4}\log \sec 2x.$$
  • $$\displaystyle \frac{1}{2}x\tan 2x+\frac{1}{4}\log \cos 2x.$$
$$\displaystyle\int \left ( \log x \right )^{2}dx.$$
  • $$\displaystyle x\left ( \log x \right )^{2}+2x \log x+2x$$
  • $$\displaystyle x\left ( \log x \right )^{2}-2x \log x+2x$$
  • $$\displaystyle x\left ( \log x \right )^{2}-2x \log x$$
  • $$\displaystyle x\left ( \log x \right )^{2}+2x \log x+x$$
$$\displaystyle \int \left [ \left ( 1+x \right )e^{x}f\left ( x \right )+xe^{x}f'\left ( x \right ) \right ]dx=e^{x},$$ then $$\displaystyle f\left ( x \right )=$$
  • $$1$$
  • $$x$$
  • $$1/x$$
  • $$\displaystyle e^{x}$$
$$\displaystyle \int \cos \sqrt{x}dx.$$
  • $$\displaystyle \left [ \sqrt{x}\sin \sqrt{x}+\cos \sqrt{x} \right ].$$
  • $$\displaystyle 2\left [ \sin \sqrt{x}-\cos \sqrt{x} \right ].$$
  • $$\displaystyle 2\left [ \sqrt{x}\sin \sqrt{x}+\sqrt{x}\cos \sqrt{x} \right ].$$
  • $$\displaystyle 2\left [ \sqrt{x}\sin \sqrt{x}+\cos \sqrt{x} \right ].$$
$$\displaystyle I=\int e^{x}\left [ \frac{1+\sqrt{1-x^{2}}\sin ^{-1}x}{\sqrt{\left ( 1-x^{2} \right )}} \right ]dx$$
  • $$-e^{-x}\sin ^{-1}x+c$$
  • $$-e^{x}\cos ^{-1}x+c$$
  • $$e^{-x}\cos ^{-1}x+c$$
  • $$e^{x}\sin ^{-1}x+c$$
$$\displaystyle\int \frac{x}{1+\cos x}dx.$$
  • $$\displaystyle x\tan \left ( x/2 \right )-2\log \sec \left ( x/2 \right ).$$
  • $$\displaystyle \tan \left ( x/2 \right )-2\log \sec \left ( x/2 \right ).$$
  • $$\displaystyle x\tan \left ( x/2 \right )+2\log \sec \left ( x/2 \right ).$$
  • $$\displaystyle x\tan \left ( x/2 \right )-\log \sec \left ( x/2 \right ).$$
$$\displaystyle\int \sin x\log \left ( \sec x+\tan x \right )dx.$$
  • $$\displaystyle \cos x \log \left ( \sec x+\tan x \right )-x^2+c$$
  • $$\displaystyle \sin x \log \left ( \sec x+\tan x \right )-x+c$$
  • $$\displaystyle -\cos x \log \left ( \sec x+\tan x \right )-x+c$$
  • $$\displaystyle -\sec x \log \left ( \sec x+\tan x \right )-x^2+c$$
Solve $$\displaystyle\int e^{x}\frac{1-\sin x}{1-\cos x}dx$$
  • $$\displaystyle -e^{x}\cot \left (\dfrac {x}{2} \right )$$
  • $$\displaystyle -e^{x}\tan \left (\dfrac{x} {2} \right )$$
  • $$\displaystyle e^{x}\tan \left (\dfrac{x} {2} \right )$$
  • $$\displaystyle e^{x}\cot \left (\dfrac {x}{2} \right )$$
$$\displaystyle \int 4^{x}\left [ g'\left ( x \right )+g\left ( x \right )\log 4\right ]dx=$$
  • $$\displaystyle \frac{4^{x}}{\log 4}g\left ( x \right )$$
  • $$\displaystyle 4^{x}$$
  • $$\displaystyle 4^{x}\log 4.g\left ( x \right )$$
  • $$\displaystyle 4^{x}g\left ( x \right )$$
$$\displaystyle \int \frac{x}{1+\sec x}dx.$$
  • $$\displaystyle \frac{x^{2}}{2}+x\tan \frac{x}{2}+2\log \sec \frac{x}{2}$$
  • $$\displaystyle \frac{x^{2}}{2}-x\tan \frac{x}{2}+2\log \sec \frac{x}{2}$$
  • $$\displaystyle \frac{x^{2}}{2}-\tan \frac{x}{2}+2\log \sec \frac{x}{2}$$
  • $$\displaystyle \frac{x^{2}}{2}-x\tan \frac{x}{2}-2\log \sec \frac{x}{2}$$
$$\displaystyle \int \frac{co\sec^{2}x-203}{\left ( \cos x \right )^{203}}dx$$
  • $$\displaystyle \frac{-\cot x}{\left ( \cos x \right )^{203}}$$
  • $$\displaystyle\frac{\cos x}{\left ( co\sec x \right )^{203}}$$
  • $$\displaystyle\frac{-\tan x}{\left ( co\sec x \right )^{203}}$$
  • $$\displaystyle\frac{\cot x}{\left ( \sin x \right )^{203}}$$
$$\displaystyle \int a^{x}\left [ \log x+\log a\log \left ( \frac{x^{x}}{e^{x}} \right ) \right ]dx$$
  • $$\displaystyle x\left ( \log x-1 \right )$$
  • $$\displaystyle a^{x}.x\left ( \log x-1 \right )$$
  • $$\displaystyle a^{x}.x\left ( \log x+1 \right )$$
  • $$\displaystyle a^{x}.\left ( \log x-1 \right )$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers