Processing math: 28%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 4 - MCQExams.com

If x log(1+1x)dx= f(x)log(x+1)+g(x).x2+Lx+c, then
  • f(x)=x2212, g(x)=12logx, L=1
  • f(x)=x22+12,g(x)=12logx,L=12
  • f(x)=x2212,g(x)=12logx,L=12
  • f(x)=x2212,g(x)=12logx, L=12
x2(logx)3dx=
  • x3[(logx)33(logx)23+2(logx)9227]+c
  • x3[(logx)33+(logx)23+2(logx)9+227]+c
  • x3[(logx)33(logx)227]+c
  • x3[(logx)33+(logx)23+2(logx)9227]+c
xsin2xdx
  • x24cos2x3+18sin2x+c
  • x24xsin2x418cos2x+c
  • x24+xsin2x4+18cos2x+c
  • x24cos2x3+18cos2x+c
x1+cosxdx=
  • xtanx22log|secx/2|+c
  • xtanx/212log|secx/2|+c
  • xtanx/2+12log|secx/2|+c
  • xcotx/212log|cscx/2|+c

Area bounded by y={x},{.} is fractional part of function and x=±1 is in sq. units
  • 1
  • 2
  • 3
  • 4
cos(logx)dx=
  • x[cos(logx)sin(logx)]+c
  • x2[cos(logx)sin(logx)]+c
  • logx2[cosx+sinx]+c
  • x2[cos(logx)+sin(logx)]+c
log(logx)xdx=
  • logx[log(logx)1]+c
  • x[log(logx)+1]+c
  • logx[log(logx)+1]+c
  • x[log(logx)1]+c
2mx.3nxdx when m,nϵN is equal to:
  • 2mx+3nxmln2+nln3+c
  • e(mxln2+nxln3)mln2+nln3+c
  • 2mx.3nxln(2m3n)+c
  • None of these
lim is equal to
  • 2
  • \displaystyle -\frac{1}{2}
  • \displaystyle \frac{1}{2}
  • 1
\displaystyle \int \sin^{-1}\left ( \frac{2x}{1+x^2} \right )dx is equal to
  • \displaystyle 2(x \tan^{-1} x +\ln \left | \cos (\tan^{-1}x) \right |)+C
  • 2[(\displaystyle x\tan^{-1}{x})^2+\ln \left | \sec (\tan^{-1}x) \right |]+c
  • 2[(\displaystyle x\tan^{-1}{x})^2-\ln \left | \cos (\tan^{-1}x) \right |]+c
  • None of these
\displaystyle \int e^{tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=
  • \displaystyle x^{2}e^{\tan^{-1}x}+c
  • \displaystyle x e^{\tan^{-1}x}+c
  • \displaystyle e^{\tan^{-1}x}+c
  • \displaystyle \frac{1}{2}e^{\tan^{-1}x}+c
If \displaystyle  \int x^{2}e^{-2x}dx=e^{-2x}(ax^{2}+bx+c)+d then
  • a=-\displaystyle \frac {1}{2}
  • b=2
  • c=-\displaystyle \frac{1}{4}
  • d\in R
\displaystyle \int x.\frac{\ln \left ( x+\sqrt{1+x^2} \right )}{\sqrt{1+x^2}} dx equals
  • \sqrt{1+x^2}\ln \left ( x+\sqrt{1+x^2} \right )-x+c
  • \displaystyle \frac{x}{2}.\ln^2\left ( x+\sqrt{1+x^2} \right )-\displaystyle \frac{x}{\sqrt{1+x^2}}+c
  • \displaystyle \frac{x}{2}.\ln^2\left ( x+\sqrt{1+x^2} \right )+\displaystyle \frac{x}{\sqrt{1+x^2}}+c
  • \sqrt{1+x^2}\ln \left ( x+\sqrt{1+x^2} \right )+x+c
Let \displaystyle \int e^{x}\left \{ f(x)-f'(x) \right \}dx=\phi (x). Then \int e^{x} f(x)dx is 
  • \displaystyle \phi (x)=e^{x}f(x)
  • \displaystyle \phi (x)-e^{x}f(x)
  • \displaystyle \frac{1}{2}\left \{ \phi (x)+e^{x}f(x) \right \}
  • \displaystyle \frac{1}{2}\left \{ \phi (x)+e^{x}f'(x) \right \}
\displaystyle \int e^{\displaystyle \tan x}(\sec x-\sin x)dx is equal to
  • \displaystyle e^{\displaystyle \tan x}\cos x+C
  • \displaystyle e^{\displaystyle \tan x}\sin x+C
  • \displaystyle -e^{\displaystyle \tan x}\cos x+C
  • \displaystyle e^{\displaystyle \tan x}\sec x+C
\displaystyle \int \left ( \log x \right )^{2}dx.
  • \displaystyle x \left [\left ( \log x \right )^{2}-2 \log x+2 \right ].
  • \displaystyle x \left [\left ( \log x \right )^{2}-2 \log x+1 \right ].
  • \displaystyle x \left [\left ( \log x \right )^{2}-2 \log x-2 \right ].
  • \displaystyle x \left [\left ( \log x \right )^{2}+2 \log x-2 \right ].
\displaystyle \int x^{2}\tan ^{-1}x\:dx.
  • \displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).
  • \displaystyle \frac{x^{3}}{3}\tan^{-1}x+\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).
  • \displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{3}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).
  • \displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{3}\log\left ( x^{2}+1 \right ).
\displaystyle \int\frac{\log x}{(1+x)^{3}}dx is equal to
  • \displaystyle \frac{\log x}{(1+x)^{2}}+\displaystyle \frac{1}{2}\log\frac{x}{x+1}+\frac{1}{2}\frac{1}{x+1}+c
  • \displaystyle 2\frac{-\log x}{(1+x)^{2}}+\displaystyle 2\log\frac{x+1}{x}+\frac{2}{x+1}+c
  • \displaystyle \frac{-2\log x}{(1+x)^{2}}+\displaystyle 2\log\frac{x}{x+1}+\frac{2}{x+1}+c
  • \displaystyle \frac{-\log x}{(1+x)^{2}}+\displaystyle \frac{1}{2}\log\frac{x+1}{x}-\frac{1}{2}\frac{1}{x+1}+c
\displaystyle \int x\sec^{2}2xdx
  • \displaystyle \frac{1}{4}x\tan 2x-\frac{1}{2}\log \sec 2x.
  • \displaystyle \frac{1}{2}x\tan 2x+\frac{1}{4}\log \sec 2x.
  • \displaystyle \frac{1}{4}x\tan 2x-\frac{1}{4}\log \sec 2x.
  • \displaystyle \frac{1}{2}x\tan 2x+\frac{1}{4}\log \cos 2x.
\displaystyle\int \left ( \log x \right )^{2}dx.
  • \displaystyle x\left ( \log x \right )^{2}+2x \log x+2x
  • \displaystyle x\left ( \log x \right )^{2}-2x \log x+2x
  • \displaystyle x\left ( \log x \right )^{2}-2x \log x
  • \displaystyle x\left ( \log x \right )^{2}+2x \log x+x
\displaystyle \int \left [ \left ( 1+x \right )e^{x}f\left ( x \right )+xe^{x}f'\left ( x \right ) \right ]dx=e^{x}, then \displaystyle f\left ( x \right )=
  • 1
  • x
  • 1/x
  • \displaystyle e^{x}
\displaystyle \int \cos \sqrt{x}dx.
  • \displaystyle \left [ \sqrt{x}\sin \sqrt{x}+\cos \sqrt{x} \right ].
  • \displaystyle 2\left [ \sin \sqrt{x}-\cos \sqrt{x} \right ].
  • \displaystyle 2\left [ \sqrt{x}\sin \sqrt{x}+\sqrt{x}\cos \sqrt{x} \right ].
  • \displaystyle 2\left [ \sqrt{x}\sin \sqrt{x}+\cos \sqrt{x} \right ].
\displaystyle I=\int e^{x}\left [ \frac{1+\sqrt{1-x^{2}}\sin ^{-1}x}{\sqrt{\left ( 1-x^{2} \right )}} \right ]dx
  • -e^{-x}\sin ^{-1}x+c
  • -e^{x}\cos ^{-1}x+c
  • e^{-x}\cos ^{-1}x+c
  • e^{x}\sin ^{-1}x+c
\displaystyle\int \frac{x}{1+\cos x}dx.
  • \displaystyle x\tan \left ( x/2 \right )-2\log \sec \left ( x/2 \right ).
  • \displaystyle \tan \left ( x/2 \right )-2\log \sec \left ( x/2 \right ).
  • \displaystyle x\tan \left ( x/2 \right )+2\log \sec \left ( x/2 \right ).
  • \displaystyle x\tan \left ( x/2 \right )-\log \sec \left ( x/2 \right ).
\displaystyle\int \sin x\log \left ( \sec x+\tan x \right )dx.
  • \displaystyle \cos x \log \left ( \sec x+\tan x \right )-x^2+c
  • \displaystyle \sin x \log \left ( \sec x+\tan x \right )-x+c
  • \displaystyle -\cos x \log \left ( \sec x+\tan x \right )-x+c
  • \displaystyle -\sec x \log \left ( \sec x+\tan x \right )-x^2+c
Solve \displaystyle\int e^{x}\frac{1-\sin x}{1-\cos x}dx
  • \displaystyle -e^{x}\cot \left (\dfrac {x}{2} \right )
  • \displaystyle -e^{x}\tan \left (\dfrac{x} {2} \right )
  • \displaystyle e^{x}\tan \left (\dfrac{x} {2} \right )
  • \displaystyle e^{x}\cot \left (\dfrac {x}{2} \right )
\displaystyle \int 4^{x}\left [ g'\left ( x \right )+g\left ( x \right )\log 4\right ]dx=
  • \displaystyle \frac{4^{x}}{\log 4}g\left ( x \right )
  • \displaystyle 4^{x}
  • \displaystyle 4^{x}\log 4.g\left ( x \right )
  • \displaystyle 4^{x}g\left ( x \right )
\displaystyle \int \frac{x}{1+\sec x}dx.
  • \displaystyle \frac{x^{2}}{2}+x\tan \frac{x}{2}+2\log \sec \frac{x}{2}
  • \displaystyle \frac{x^{2}}{2}-x\tan \frac{x}{2}+2\log \sec \frac{x}{2}
  • \displaystyle \frac{x^{2}}{2}-\tan \frac{x}{2}+2\log \sec \frac{x}{2}
  • \displaystyle \frac{x^{2}}{2}-x\tan \frac{x}{2}-2\log \sec \frac{x}{2}
\displaystyle \int \frac{co\sec^{2}x-203}{\left ( \cos x \right )^{203}}dx
  • \displaystyle \frac{-\cot x}{\left ( \cos x \right )^{203}}
  • \displaystyle\frac{\cos x}{\left ( co\sec x \right )^{203}}
  • \displaystyle\frac{-\tan x}{\left ( co\sec x \right )^{203}}
  • \displaystyle\frac{\cot x}{\left ( \sin x \right )^{203}}
\displaystyle \int a^{x}\left [ \log x+\log a\log \left ( \frac{x^{x}}{e^{x}} \right ) \right ]dx
  • \displaystyle x\left ( \log x-1 \right )
  • \displaystyle a^{x}.x\left ( \log x-1 \right )
  • \displaystyle a^{x}.x\left ( \log x+1 \right )
  • \displaystyle a^{x}.\left ( \log x-1 \right )
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers