Explanation
If the graph of the antiderivative F(x) of f(x) = log (logx) + $$(logx)^{-2}$$ passes through (e. 1998\, -\, e) then the term independent of x in F(x) is .......... .
$$\displaystyle \int \frac{3x^4\,-\, 1}{(x^4\, +\, x\, +\, 1)^2}dx\, =\, -\, \int \left ( \frac{1}{x^4\, +\, x\, +\, 1}\, -\, \frac{x(4x^3\, +\, 1)}{(x^4\, +\, x\, +\, 1)^2}\right ) dx$$
$$=\displaystyle \frac{-x}{x^4\, +\, x\, +\, 1}\, +\, c$$,
Using $$\displaystyle \left ( \int [f(x)\, +\, xf`\, (x)]dx\, =\, xf(x)\, +\, C\right )$$
Please disable the adBlock and continue. Thank you.