Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 5 - MCQExams.com

x3tan1xdx.
  • 12[(x41)tan1xx23+x].
  • 12[(x4+1)tan1xx23+x].
  • 14[(x41)tan1xx23+x].
  • 14[(x41)tan1xx13+x].
x(f(x2)g(x2)f(x2)g(x2))dx=
  • f(x2)g(x2)g(x2)f(x2)+c
  • 12(f(x2)g(x2)f(x2))+c
  • 12(f(x2)g(x2)g(x2)f(x2))+c
  • none of these
If f(x)=1xx2+1 and f(0)=1+22, then f(1) is equal to
  • log(21)
  • 12
  • 1+2
  • 12log(1+2)
If I=log(cosx)cos2xdx, then I equals
  • tanxlogcosx+tanxx+C
  • tanxlogcosxtanxx2+C
  • tanxlogcosxcotx+x+C
  • tanxlogcosx+cotxx+C
esinx(xcos3xsinxcos2x)dx
  • xesinxesinx.secx
  • esinxesinx.secx
  • xecosxesinx.secx
  • xesinx+esinx.secx
If I=cosθlog(tanθ/2)dθ, then I equals
  • sinθlog(tanθ/2)+θ+C
  • cosθlog(tanθ/2)+θ+C
  • sinθlog(tanθ/2)θ+C
  • none of these
If log(x2+x)dx=xlogx+(x+1)log(x+1)+K, then K is equal to

  • 2x+log(x+1)+C
  • 2xlog(x+1)+C
  • constant
  • none of these
ecosx(xsin3x+cosx)sin2xdx
  • x.ecosxecosxcosecx.
  • .ecosx+ecosxcosecx.
  • x.ecosxecosxcosecx.
  • x.ecosx+ecosxcosecx.
2x(f(x)+f(x)log2)dx is
  • 2xf(x)+C
  • 2xf(x)+C
  • 2x(log2)f(x)+C
  • (log2)f(x)+C

If the graph of the antiderivative F(x) of f(x) = log (logx) + (logx)2 passes through (e. 1998\, -\, e) then the term independent of x in F(x) is .......... .

  • 1998
  • 1999
  • 1997
  • 1996
If x2(xsinx+cosx)2dx=f(x)xsinx+cosx+tanx+c, then
  • f(x)=xcosx
  • f(x)=cosxx
  • f(x)=xcosx
  • none of these
x2+1x4+1dx is equal to.
  • 12tan1(x22x)+c
  • 12tan1(x212x)+c
  • 12tan1(x2+1x)+c
  • tan1(x212x)+c
Evaluate xexdx.
  • xexex+c
  • xex+ex+c
  • xex+ex+c
  • xexex+c
Identify the correct expression :
  • xlnxdx=x2ln|x|x2+c
  • xln|x|dx=xex+c
  • xexdx=xex+cx
  • dxa2+x2=1atan1(xa)+c
tan2xdx
  • tanxx+c
  • tanx+c
  • tanxx
  • None of the above
Primitive of 3x41(x4+x+1)2 w.r.t. x is
  • xx4+x+1+c
  • xx4+x+1+c
  • x+1x4+x+1+c
  • x+1x4+x+1+c
Evaluate (tan(ex)+xex.sec2(ex))dx
  • xtan(ex)+c
  • xtan(ex)+c
  • xtan(ex)+c
  • xtan(ex)+c
If dydt=ky and k0, which of the following could be the equation of y?
  • y=kx7
  • y=95ekt
  • y=5+ln k
  • y=(xk)2
  • y=kx
(1+xx1)ex+x1dx is equal to
  • (x+1)ex+x1+C
  • (x1)ex+x1+C
  • xex+x1+C
  • xex+x1x+C
If f(x)log(sinx)dx=log[logsinx]+c, then f(x)=........
  • cotx
  • tanx
  • secx
  • cosecx
1x2(x4+1)3/4dx is equal to
  • (1+1x4)1/4+C
  • (x4+1)1/4+C
  • (11x4)1/4+C
  • (1+1x4)1/4+C
sin2xsin2x+2cos2xdx=
  • log(1+cos2x)+C
  • log(1+tan2x)+C
  • log(1+sin2x)+C
  • log(1+cos2x)+C
What is x41x2x4+x2+1dx equal to?
  • x4+x2+1x+c
  • x4+21x2+c
  • x2+1x2+1+c
  • x4x2+1x+c
What is (xcosx+sinx)dx equal to?
Where c is an arbitrary constant
  • xsinx+c
  • xcosx+c
  • xsinx+c
  • xcosx+c
(4ex252ex5)dx=Ax+Blog|2ex5|+c, then
  • A=5,B=3
  • A=5,B=3
  • A=5,B=3
  • A=5,B=3
The value of exx(xlogx+1) dx  is equal to 
  • exx+C
  • xexlog|x|+C
  • exlog|x|+C
  • x(ex+log|x|)+C
  • xex+log|x|+C
cosαsinxcos(xα)dx=___________ +c where 0<x<α<π/2 and α-constant.
  • ln|tanx+cotα|
  • ln|cotx+tanα|
  • ln|tanx+cotα|
  • ln|cotx+tanα|
If 1x1x3dx=alog|1x311x3+1|+b then a=
  • 23
  • 13
  • 23
  • None of these
excosecx(1+cotx)dx is equal to
  • excosecx+C
  • excosecx+C
  • ex(cosecx+cotx)+C
  • ex(cosecx+tanx)+C
  • exsecx+C
The solution of the equation dydx=x(2logx+1)siny+ycosy is
  • ysiny=x2logx+x2y+c
  • ycosy=x2(logx+1)+c
  • ycosy=x2logx+x22+c
  • ysiny=x2logx+c
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers