Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 6 - MCQExams.com

ex(sinx+2cosx)sinxdx is equal to
  • excosx+C
  • exsinx+C
  • exsin2x+C
  • exsin2x+C
  • ex(cosx+sinx)+C
17sin(x7+10)dx is equal to
  • 17cos(x7+10)+C
  • 17cos(x7+10)+C
  • cos(x7+10)+C
  • 7cos(x7+10)+C
  • cos(x+70)+C
xex(1+x)2dx is equal to
  • exx+1+C
  • exx+1+C
  • xexx+1+C
  • xexx+1+C
  • ex(x+1)2+C
If 1+sinxf(x)dx=23(1+sinx)3/2+C, then f(x) is equal to
  • cosx
  • sinx
  • tanx
  • 1
xxlog(ex)dx is equal to
  • xx+c
  • xlogx+c
  • (logx)x+c
  • xlogx+c
2x+576xx2dx=A76xx2+Bsin1(x+34)+C
(where C is a constant of integration), then the ordered pair (A,B) is equal to
  • (2,1)
  • (2,1)
  • (2,1)
  • (2,1)
If f(x) satisfies the relation f(5x3y2)=5f(x)3f(y)2 x,yR and  f(0)=3 and f(0)=2, then the period of sin(f(x)) is
  • 2π
  • π
  • 3π
  • 4π
ecot1x1+x2(x2x+1)dx 
  • ecot1x1+x2
  • xecot1x
  • ecot1x
  • ecot1x
Let I=π/3π/4sinxxdx. Then?
  • 12I1
  • 4I230
  • 38I26
  • 1I232
(ex)x(2+logx)dx=....+c,xR+{1}
  • xx
  • (ex)x
  • ex
  • (1+logx)(ex)x
tan1xdx=__________+c.
  • xtan1x+12log|tan1xx2+1|
  • xtan1x12log|x2+1|
  • xtan1x+12log|x2+1|
  • 11+x2
Solve  e7x+logxdx=.....+c
  • e7x[7x1]
  • ex98[7x1]
  • ex49[7x1]
  • e7x
If f(x)dx=g(x), then f1(x)dx= _____________+c.
  • xf(x)g(f1(x))
  • xf1(x)g(f1(x))
  • xf1(x)g(f(x))
  • xf1(x)
The value of d2dx2(tan1x)dx is equal to
  • 11+x2 + C
  • tan1x + C
  • x tan - 12log(1+x2)+C
  • 1+x22 + C
(3.x2.tan1x+x31+x2)dx=....+c.
  • x3tan1x
  • x33tan1x
  • x2tan1x
  • x22tan1x
I=x+2(x+1)2dx; then I is equal to 
  • log(x+1)+1x+1+c
  • log(x+2)1x+1+c
  • log(1+x)1x+1+c
  • log(x+2)+1x+1+c
If g(1)=g(2) then the value of  21[f{g(x)}]1f{g(x)}g(x)dxis
  • 1
  • 2
  • 0
  • none of these
2x.exdx=
  • 2x.ex1n2+C
  • 2x.ex1+n2+C
  • 2x.ex1+n2+C
  • (2e)xn(2e)+C
y=1+sin2xdx;y is equal to-
  • sinxcosx+c
  • sinx+cosx+c
  • cosxsinx+c
  • None of these
If In=I0π/4tannXsec2Xdx     then I1,I2,I3 are in
  • A. P
  • G . P
  • H . M
  • none
If π/20sinxcosxdx is equal to:
  • 12
  • 14
  • 2
  • 1
The value of dx4x2+9 is:
  • 16tan1(3x2)+c
  • 16tan1(2x3)+c
  • 32tan1(2x3)+c
  • 12tan1(2x3)+c
Evaluate : axxdx
  • axx+atan1(xax)+c
  • axx+atan1(xax)+c
  • axxatan1(xax)+c
  • axxatan1(xax)+c
Find the derivative of exsinx.
  • excosec x[cotx+1]
  • excosec x[1cotx]
  • exsecx[cotx+1]
  • exsecx[cotx1]
If In=sinnxdx,, then nIn(n1)In2=
  • sinn1xcosx
  • cosn1xsinx
  • sinn1xcosx
  • cosn1xsinx
Solve xex(x+1)2dx
  • exx+1+C
  • x(x+1)2+C
  • ex(x+1)+C
  • x(x+1)2+C
The value of etan1x(1+x+x2)1+x2dx is ?
  • tan1x+C
  • etan2x+2x+C
  • etan1x+C
  • xetan1x+C
If 2x14xdx=Ksin1(2x)+C, then K is equal to 
  • n2
  • 12n2
  • 12
  • 1n2
a+xaxdx is equal to-
  • asin1(x/a)a2x2+c
  • acos1(x/a)a2x2+c
  • asin1(x/a)a2+x2+c
  • acos1(x/a)a2+x2+c
Evaluate: sin3x(cos4x+3cos2x+1)tan1(secx+cosx)dx
  • tan1(secx+cosx)+c
  • loge|tan1(secx+cosx)|+c
  • 1(secx+cosx)2+c
  • tan1(cotx+cosecx)+c
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers