Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 7 - MCQExams.com

Evaluate xa2x2a2+x2dx
  • 12a2cos1(x2a2)+12a4+x4+C
  • 12sin1(x2a2)+a4+x4+C
  • 12a2sin1(x2a2)+12a4x4+C
  • 12cos1(x2a2)+12a4x4+C
Solve:
4x2e2x3 dx
  • 23e2x3+C
  • 43e2x3+C
  • 32e2x3+C
  • 13e2x3+C

The value of lnn(1(1x))dxx(x1) is

  • 12[m(11x)2]+C
  • 12[m(1+1x)]2+C
  • 12n(x(x1))+C
  • 12[n(x(x1))]2+C
If I=ex(1x)2(1+x2)2dx , then I =
  • ex1x2(1+x2)+C
  • ex1x(1+x2)+C
  • ex1(1+x2)+C
  • ex12x(1+x2)2+C
The value of etan1x(1+x+x21+x2)dx is equal to
  • xetan1x+C
  • x2etan1x+C
  • 1xetan1x+C
  • xecot1x+C
Evaluate xx2+2dx
  • I=x22+C
  • I=x2+2+C
  • I=x3+2+C
  • I=x32+C
The function f(x) satisfying the equation f2(x)+4f(x).f(x)+[f(x)]2=0 is-
  • f(x)=c.e(23x)
  • f(x)=c.e(23x)
  • f(x)=c.e(32)x
  • f(x)=c.e(2+3)x
The value of (x1)ex is equal to 
  • xex+C
  • xex+C
  • xex+C
  • xex+C
(1+3x+3x2+4x3+........)dx(|x|<1)-
  • (1+x)1+c
  • (1x)1+c
  • (1+x)2+c
  • None of these
2x14xdx=Ksin1(2x)+C, then the value of K is equal to
  • n2
  • 122
  • 12
  • 1n2
cos(logx)dx=............+c
  • x2[cos(logx)+sin(logx)]
  • x4[cos(logx)+sin(logx)]
  • x2[cos(logx)sin(logx)]
  • x2[sin(logx)+cos(logx)]
xsinxsec3xdx=
  • 12[sec2xtanx]+c
  • 12[xsec2xtanx]+c
  • 12[xsec2x+tanx]+c
  • 12[sec2x+tanx]+c
P(x)ekxdx=Q(x)e4x+C, where P(x) is polynomial of degree n and Q(x) is polynomial of degree 7. Then the value of n+7+k+limxP(x)Q(x) is:
  • 18
  • 19
  • 20
  • 22
Evaluate using limit of sum:
31(x+1)2dx
  • 26
  • 28
  • 30
  • 32
π/40sec2x(1+tanx)(2+tanx)dx equals:
  • loge23
  • loge3
  • 12loge43
  • loge43
If ln=tn1+t2dt then
  • ln+2=tnnnln
  • ln+1=tn+1n+1ln
  • ln+1=tn1n1ln
  • ln21=tn+1n+1ln
ex[tanxlog(cosx)]dx=
  • exlog(secx)+c
  • exlog(cosecx)+c
  • exlog(cosx)+c
  • exlog(sinx)+c
If dxsin3xcos5x=acotx+btan3x+c where c is an arbitrary constant of integration then the values of a and b are respectively :
  • 2 & 23
  • 2 & 23
  • 2 & 23
  • None of these
(x2x+5)dx
  • x33x22+5x+c
  • x33+x22+5x+c
  • x22x2+5x+c
  • x44x43+5
x3ex2dx=
  • 12(x2+1)ex2+c
  • (x2+1)ex2+c
  • 12(x21)ex2+c
  • (x21)ex2+c
x2ex3cos(ex3)dx is equal to?
  • sin(ex3)+C
  • 3sin(ex3)+C
  • 13sin(ex3)+C
  • exsin(ex3)+C
The value of ex1ex+1dx is equal to
  • n(ex+e2x1)sec1(ex)+c
  • n(ex+e2x1)+sec1(ex)+c
  • n(exe2x1)sec1(ex)+c
  • n(ex+e2x1)sin1(ex)+c
1+sinxdx=
  • 12(sinx2+cosx2)+c
  • 12(sinx2cosx2)+c
  • 21+sinx+c
  • 21sinx+c
The integral of esinx(xcosxsecxtanx)dx is?
  • sesinxesinxsecx+c
  • (x+secx)esinx+c
  • esinxcosx+c
  • esinx(cosxsecx)+c
The value of (x1)ex dx is equal to
  • xex+C
  • xex+C
  • xex+C
  • xex+C
dx(x2+4x+5)2 is equal to
  • 12[tan1(x+1)+x+2x2+4x+5]+c
  • 12[tan1(x+2)x+2x2+4x+5]+c
  • 12[tan1(x+1)x+2x2+4x+5]+c
  • 12[tan1(x+2)+x+2x2+4x+5]+c
ex+ex+(exex)sinx1+cosxdx=
  • (ex+ex)tan(x/2)+C
  • (exex)cot(x/2)+C
  • (exex)tan(x/2)+C
  • (exex)cosec(x/2)+C
If x4+1x6+1dx=tan1(f(x))23tan1(g(x))+C, then
  • Both f(x) & g(x) are odd functions
  • g(x) is monotonic function
  • none of these
  • None 
Integral of f(x)=1+x2 with respect to x2 is

  • 23(1+x2)3/2x+k
  • 23(1+x2)3/2+k
  • 23x(1+x2)3/2+k
  • None of these
 The value of dxsinx.sin(x+α) equal to
  • cscαn|sinxsin(x+α)|+c
  • cscαn|sin(x+α)sinx|+c
  • cscαn|sec(x+α)secx|+c
  • cscαn|secxsec(x+α)|+c
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers