Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 8 - MCQExams.com

The value of 1sin3xcos5xdx is
  • 2tanx+23(tanx)3/2+C
  • 2tanx23(tanx)3/2+C
  • 2tanx+23(tanx)1/2+C
  • None of these
Evaluate :
xsin3x dx
  • 13xcos3x+19sin3x+C
  • 13xcos3x+13sin3x+C
  • 13xsin3x13cos3x+C
  • None of these
If y=(x+x2a2)n then (x2a2)(dydx)2=
  • n2y
  • n2y
  • ny2
  • n2y2
ex/2sin(π4+x2)dx=
  • 2 ex/2sinx2+c
  • 2 ex/2cosx2+c
  • 2 ex/2sinx2+c
  • 2 ex/2cosx2+c
xnx(x21)3/2dx equals
  • arcsecxnxx21+C
  • sec1xnxx21+C
  • cos1xnxx21+C
  • secxnxx21+C
sin1xcos1xsin1x+cos1xdx=
  • 4π[xsin1+1x2]x+c
  • log[sin1+1x2]x+c
  • 4π[xsin1+1x2]+c
  • 2π[xsin1xxcos1x+21x2]+c
x2x61dx=
  • 16{x3x61log(x3+x61)}+c
  • 16{x3x61+log(x3+x61)}+c
  • 16{x3x61sin1(x3)}+c
  • 16{x3x61+sin1(x3)}+c
Let A=10ett+1 dt,  then the value of 10tet2t2+1dt is:-
  • A2
  • 12A
  • 2A
  • 12A2
The value of the integral π/2π/2[x2+logπxπ+x] cos x dx is 
  • 0
  • π224
  • π22+4
  • π22
10dxx+1+xdx=
  • 43(2+1)
  • 43(21)
  • 34(21)
  • 34(22)
x+sin1+cosxdx=
  • x tanx2+c
  • x cotx2
  • x sinx2+c
  • x cosx2
Solve xsin2xdx 
  • (x1)2(xcos2x2)+C 
  • (x1)2(xsin2x2)+C 
  • (x+1)2(xsin2x2)+C 
  • None of these
If 11+sinxdx=tan(x2+a)+b, then 
  • a=π4,bR
  • a=π4,bR
  • a=5π4,bR
  • None of these
Solve x3logxdx
  • x4logx4+C
  • I=x44logxx416+C
  • 18[x4logx4x2]+C
  • 116[4x4logx+x4]+C
Evaluate :
9cosxsinx4sinx+5cosxdx
  • x+ln(4sinx+cosx)+c
  • x+ln(sinx5cosx)+c
  • x+ln(4sinx+5cosx)+c
  • None of these
If sinxsin(xα)dx=Ax+Blogsin(xα)+c, then the value of (A,B) is-
  • (sinα,cosα)
  • (cosα,sinα)
  • (sinα,cosα)
  • (cosα,sinα)
Solve 21x3x+x dx
  • 1
  • 12
  • 32
  • 0
If f(3x)=f(x), then 21x f(x) dx is equal to
  • 3221f(2x) dx
  • 3221f(x) dx
  • 1221f(x) dx
  • 21f(x) dx
If f(x)=(x2+sin2x1+x2)sec2xdx and f(0)=0,then  f (1) equals:
  • 1π4
  • π4
  • tan1π4
  • tan1+1
The value of (xelnsinxcosx) dx is equal to :
  • -x cos x + C
  • sin x - x cos x + C
  • elnxcosx+C
  • sin x + x cos x + C
The integrating factor of the differential equation dydx(xlogex)+y=2logex is given by

  • x
  • ex
  • logex
  • loge(logex)
{f(x)ϕ(x)f(x)ϕ(x)}f(x)ϕ(x){logϕ(x)logf(x)}dx is equal to
  • logϕ(x)f(x)+k
  • 12{logϕ(x)f(x)}2+k
  • ϕ(x)f(x)logϕ(x)f(x)+k
  • None of these
{1+2tanx(tanx+secx)}12dx=
  • log(secx+tanx)+c
  • log(secx+tanx)12+c
  • logsecx(secx+tanx)+c
  • None of these
(tanxcotx)2dx=
  • tanx+x+c
  • tanxx+c
  • tanxcotx+c
  • tanxcotx4x+cc
If log(a2+x2)dx=h(x), then h(x)= 
  • xlog(a2+x2)+2tan1(xa)+c
  • x2log(a2+x2)+x+atan1(xa)+c
  • xlog(a2+x2)2x+2atan1(xa)+c
  • x2log(a2+x2)+2xa2tan1(xa)+c
Evaluate: 1(x+2)x+1dx
  • 2tan1(x+1)+c
  • tan1(x1)+c
  • 2tanh1(x+1)c
  • tan1(x+1)+c
Evaluate:
xxln(ex)dx  
  • xx+C
  • xlnx+C
  • (lnx)x+C
  • xlnx+C
 ex[f(x)+f(x)]dx=ex.f(x)+C
  • True
  • False
log10xdx=
  • xlog10x+c
  • x(log10x+log10e)+c
  • log10x+c
  • x(log10xlog10e)+c
If f(x)dx=f(x), then {f(x)}2 dx is equal to :
  • 12{f(x)}2
  • {f(x)}3
  • {f(x)}33
  • {f(x)}2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers