Explanation
Consider the given integral.
I=∫x3logxdx
I=logx(x44)−∫1x(x44)dx
I=x44logx−14∫x3dx
I=x44logx−14(x44)+C
I=x44logx−x416+C
Hence, this is the answer.
∫log10xdx=∫(logexloge10)dx=(1loge10)∫logx⋅1⋅dx(1loge10)[(logx)⋅x−∫(1x⋅xdx)]=(d1loge10)(xlogx−x)+c=x((logexloge10)−(1loge10))+c=x(log10x−log10e)+C
Please disable the adBlock and continue. Thank you.