CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 9 - MCQExams.com

$$\displaystyle\int \left\{\dfrac{(log x-1)}{1+(log x)^2}\right\}^2dx$$ is equals to?
  • $$\dfrac{log x}{(log x)^2+1}+C$$
  • $$\dfrac{x}{x^2+1}+C$$
  • $$\dfrac{xe^x}{1+x^2}+C$$
  • $$\dfrac{x}{(log x)^2+1}+C$$
The value of the integral $$\int _ { - \pi } ^ { \pi } ( \cos p x - \sin q x ) ^ { 2 } d x$$ where $$p , q$$ are integers, is equal to:-
  • $$- \pi$$
  • 0
  • $$\pi$$
  • 2p
$$\int \frac { \cos x + 2 \sin x } { 7 \sin x - 5 \cos x } d x = a x + b \ln | 7 \sin x - 5 \cos x | + c$$ then $$a+b$$ is
  • $$\frac { 1 } { 17 }$$
  • $$\frac { 3 } { 37 }$$
  • $$\frac { 13 } { 37 }$$
  • $$\frac { 23 } { 47 }$$
$$\displaystyle \int \dfrac { d x } { \sin ^ { 2 } x \cos ^ { 2 } x }$$ equals-
  • $$\tan x - \cot x + C$$
  • $$\tan x + \cot x + c$$
  • $$\tan x \cot x + c$$
  • $$\tan x - \cot 2 x + c$$
$$\displaystyle \int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 + x ^ { 4 } } } d x$$ is equal to 
  • $$\sqrt { 2 } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c$$
  • $$\frac { 1 } { \sqrt { 2 } } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c$$
  • $$\frac { 1 } { 2 } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c$$
  • $$\frac { 1 } { \sqrt { 2 } } \sin ^ { - 1 } \left\{ \frac { x ^ { 2 } + 1 } { \sqrt { 2 } x } \right\} + c$$
$$\displaystyle\int { \dfrac { \left( x+3 \right) { e }^{ x } }{ { \left( x+4 \right)  }^{ 2 } }  } dx$$ is equal to
  • $$\dfrac { 1 }{ { \left( x+4 \right) }^{ 2 } } +C$$
  • $$\dfrac { { e }^{ x } }{ { \left( x+4 \right) }^{ 2 } } +C$$
  • $$\dfrac { { e }^{ x } }{ x+4 } +C$$
  • $$\dfrac { { e }^{ x } }{ x+3 } +C$$
If $$\int \frac { x ^ { 2 } \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x = \tan ^ { - 1 } x - \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + f ( x ) + c$$ then $$f ( x ) =$$
  • $$- \frac { \tan ^ { - 1 } x } { 2 }$$
  • $$- \frac { 1 } { 2 } \left( \tan ^ { - 1 } x \right) ^ { 2 }$$
  • $$\frac { \tan ^ { - 1 } x } { 2 }$$
  • None of these
$$\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+2 \right)  }  } $$=
  • $$\dfrac { \pi }{ 4 } +\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } } $$
  • $$\dfrac { \pi }{ 2 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } } $$
  • $$\dfrac { \pi }{ 4 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } } $$
  • $$\dfrac { \pi }{ 3 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } } $$
The value of $$\int _{ -1 }^{ 1 }{ \dfrac { { cot }^{ -1 }x }{ \pi  }  } dx$$
  • 1
  • 2
  • 3
  • 0
$$\int \left( x ^ { 6 } + 7 x ^ { 5 } + 6 x ^ { 4 } + 5 x ^ { 3 } + 4 x ^ { 2 } + 3 x + 1 \right) e ^ { x } d x$$ equals
  • $$\sum _ { j = 0 } ^ { 6 } x ^ { j } e ^ { x } + c$$
  • $$\sum _ { j = 1 } ^ { 7 } x ^ { j } e ^ { x } + c$$
  • $$\sum _ { i = 1 } ^ { 6 } x ^ { i } e ^ { x } + c$$
  • $$\sum _ { i = 0 } ^ { 5 } x ^ { i } e ^ { x } + c$$
The integral $$\int _{ 2a/4 }^{ a/2 }{ (2\quad cosecx{ ) }^{ 17 } } $$ dx is equal to:
  • $$\int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ 2({ e }^{ u }+{ e }^{ -u }{ ) }^{ 16 } } du$$
  • $$\int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ ({ e }^{ u }+{ e }^{ -u }{ ) }^{ 17 } } du$$
  • $$\int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ ({ e }^{ u }-{ e }^{ -u }{ ) }^{ 17 } } du$$
  • $$\int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ 2({ e }^{ u }-{ e }^{ -u }{ ) }^{ 16 } } du$$
Evaluate: $$\displaystyle\int { \dfrac { { x }^{ 2 }+1 }{ { x }^{ 4 }+1 } dx } $$ equals 
  • $$\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C$$
  • $$\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C$$
  • $$\dfrac{1}{2}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C$$
  • $$\dfrac{1}{2}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C$$
Solve:$$\int {\dfrac{{dx}}{{\left( {x - 3} \right)\sqrt {x + 1} }}} $$
  • $$\cos { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c$$
  • $$\sin { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c$$
  • $$-\sin { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c$$
  • $$-\cos { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c$$
$$\displaystyle \int{\dfrac{1-x^{2}}{(1+x^{2})\sqrt{1+x^{4}}}dx}$$ is equal to 
  • $$\sqrt{2}\sin^{-1}\left\{\dfrac{\sqrt{2}x}{x^{2}+1}\right\}+c$$
  • $$\dfrac{1}{\sqrt{2}}\sin^{-1}\left\{\dfrac{\sqrt{2}x}{x^{2}+1}\right\}+c$$
  • $$\dfrac{1}{2}\sin^{-1}\left\{\dfrac{\sqrt{2}x}{x^{2}+1}\right\}+c$$
  • $$\dfrac{1}{\sqrt{2}}\sin^{-1}\left\{\dfrac{x^{2}+1}{\sqrt{2}x}\right\}+c$$
The value of the integral $$\int _{ 0 }^{ 1 }{ \sqrt { \frac { 1-x }{ 1+x }  }  } $$ dx is
  • $$\frac { \pi }{ 2 } +1$$
  • $$\frac { \pi }{ 2 } -1$$
  • -1
  • 1
$$\displaystyle \int{\dfrac{x^{3}-1}{x^{3}+x}dx}$$ equal to 
  • $$x-\log x+\log(x^{2}+1)-\tan^{-1}x+c$$
  • $$x-\log x+\dfrac{1}{2}\log(x^{2}+1)-\tan^{-1}x+c$$
  • $$x+\log x+\dfrac{1}{2}\log(x^{2}+1)+\tan^{-1}x+c$$
  • $$x+\log x-\dfrac{1}{2}\log(x^{2}+1)-\tan^{-1}x+c$$
The integral $$\displaystyle \int { \left( 1+2{ x }^{ 2 }+\frac { 1 }{ x }  \right)  } { e }^{ { x }^{ 2-\frac { 1 }{ x }  } }dx$$ is equal to
  • $$(2x-1).e^{x^{2-\dfrac {1}{x}}}+c$$
  • $$(2x+1).e^{x^{2-\dfrac {1}{x}}}+c$$
  • $$xe^{x^{2-\dfrac {1}{x}}}+c$$
  • $$-xe^{x^{2-\dfrac {1}{x}}}+c$$
$$\displaystyle \int e^{x/2}\sin (\dfrac {x}{2}+\dfrac {\pi}{4})dx$$ is equal to---
  • $$e^{x/2}\sin x/2+c$$
  • $$e^{x/2}\cos x/2+c$$
  • $$\sqrt {2}e^{x/2}\sin x/2+c$$
  • $$\sqrt {2}e^{x/2}\cos x/2+c$$
$$\displaystyle \int \frac { e ^ { x } ( 1 + \sin x ) } { 1 + \cos x } d x =$$
  • $$e ^ { x } \tan x + c$$
  • $$e ^ { x } \sec ^ { 2 } \frac { x } { 2 } + c$$
  • $$e ^ { x } \tan \frac { x } { 2 } + c$$
  • $$\frac { 1 } { 2 } e ^ { x } \tan \frac { x } { 2 } + c$$
$$\displaystyle \int \dfrac {1}{\sqrt {\sin^{3}x\sin(x+a)}}dx$$ is equal to
  • $$2\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c$$
  • $$-2\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \cot x}+c$$
  • $$\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c$$
  • $$-\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c$$
For $$x\in R,\ f(x)=|\log 2-\sin x|$$ and $$g(x)=f(f(x))$$, then 
  • $$g'(0)=\cos (\log 2)$$
  • $$g'(0)=-\cos (\log 2)$$
  • $$g$$ is differentible at $$x=0$$ and $$g'(0)=-\sin (\log 2)$$
  • $$g$$ is not differentiable at $$x=0$$
Solve:
$$\displaystyle \int e^x \left(\tan^{-1}x + \dfrac{1}{1 + x^2}\right) dx$$
  • $$e^x \tan^{-1} x + c$$
  • $$\dfrac{e^x}{1 + x^2} + c$$
  • $$e^x \tan x + c$$
  • None of these
$$\int\dfrac{1}{\sqrt{x}+\sqrt{x+1}}dx$$ is equal to
  • $$\dfrac{2}{3}[(x+1)^{3/2}-x^{3/2}]+C$$
  • $$\dfrac{2x}{3}[\sqrt{x+1}-\sqrt{x}]+C$$
  • $$\ln[\sqrt{x}-\sqrt{x+1}]+C$$
  • $$\ln[\sqrt{x+1}-\sqrt{x}]+C$$
$$\displaystyle\int \dfrac { x - 2 } { x ^ { 2 } - 4 x + 3 } d x =$$ 
  • $$\log \left| \sqrt { x ^ { 2 } - 4 x + 3 } \right| + c$$
  • $$\log | ( x - 3 ) ( x - 1 ) / + c$$
  • $$x \log | x - 3 | - 2 \log | x - 2 | + x$$
  • None
The value of the definite integral
$$\overset { { a }_{ 1 } }{ \underset { { a }_{ 2 } }{ \int { \frac { d\theta  }{ 1+tan\theta  }  }  }  } =\frac { 501\pi  }{ K } $$ where $$\ a _{ 2 }=\quad \frac { 1003\pi  }{ 2008 } $$ and $${ \ a  }_{ 1 }=\frac { \pi  }{ 2008 } $$ The value of K equalls
  • 2007
  • 2006
  • 2009
  • 2008
If $$g\left( x \right) =\int { { x }^{ x }\log _{ e }{ (ex)dx }  } $$ then  $$g\left( \pi \right) $$ equals
  • $$\pi \log _{ e }{ \pi } $$
  • $${ \pi }^{ \pi }\log _{ e }{ (e\pi } )$$
  • $${ \pi }^{ \pi }\log _{ e }{ (\pi } )$$
  • $${\pi}^\pi$$
$$\int {\dfrac{1}{{9{x^2} - 25}}dx = \_\_\_\_\_\_ + c.} $$
  • $$\dfrac{1}{{30}}\log \left| {\dfrac{{3x + 5}}{{3x - 5}}} \right|$$
  • $$\log \left| {x + \sqrt {3x - 5} } \right|$$
  • $$\dfrac{1}{{30}}\log \left| {\dfrac{{3x - 5}}{{3x + 5}}} \right|$$
  • $$\log \left| {x - \sqrt {3x - 5} } \right|$$
If $$I=\displaystyle \int _{ 0 }^{ 1 }{ \frac { dx }{ \left( 1+x \right) \left( 2+x \right) \sqrt { x\left( 1-x \right)  }  }  }$$ then $$I=$$ 
  • $$2\pi$$
  • $$\pi$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {\pi}{\sqrt {6}}|\sqrt {3}-1|$$
$$\int {{e^{3{{\log }_e}x}}.{{\left( {{x^4} + 1} \right)}^{ - 1}}dx = \_\_\_\_\_\_\_\_\_ + C.} $$
  • $$\log \left( {{x^4} + 1} \right)$$
  • $$\frac{1}{4}\log \left( {{x^4} + 1} \right)$$
  • $$-\log \left( {{x^4} + 1} \right)$$
  • $$\frac{{ - 3}}{{{{\left( {{x^4} + 1} \right)}^3}}}$$
The integral of $$\dfrac{x^{2}-x}{x^{3}-x^{2}+x-1}$$ w.r.t $$x$$ is 
  • $$\dfrac{1}{2}\log|x^{2}+1|+C$$
  • $$\dfrac{1}{2}\log|x^{2}-1|+C$$
  • $$\log|x^{2}+1|+C$$
  • $$\log|x^{2}-1|+C$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers