Explanation
$$\\\int\>(\frac{(1+x^2-1)tan^{-1}x}{1+x^2})dx\\=\int\>\left(1-(\frac{1}{1+x^2})\right)tan^{-1}x\>dx\\=\int\>1.tan^{-1}dx-\int\>(\frac{tan^{-1}x}{1+x^2})dx\\Use\>ILATE\>in\>first\>part\>and\>assume\\tan^{-1}x=t\>for\>second\>integration\\=xtan^{-1}x-\int\>(\frac{1}{1+x^2})\times\>xdx-\int\>t\>dt\\=xtan^{-1}x-(\frac{1}{2})log|1+x^2|-(\frac{t^2}{2})+C\\=xtan^{-1}x-(\frac{1}{2})log|1+x^2|-(\frac{(tan^{-1}x)^2}{2})+C\\\therefore\>C=-(\frac{1}{2})(tan^{-1}x)^2$$
Please disable the adBlock and continue. Thank you.