CBSE Questions for Class 12 Commerce Applied Mathematics Linear Equations Quiz 3 - MCQExams.com

Solve the following simultaneous equations:
$$37x+29y=13;\, \, 29x+37y=53$$
  • $$x=1$$, $$y=4$$
  • $$x=3$$, $$y=-1$$
  • $$x=-2$$, $$y=3$$
  • $$x=1$$, $$y=-2$$
Find the values of the $$x+y$$ and $$x-y$$ from the examples given below without solving for x and y

$$4x+3y=24;\, \, 3x+4y=25$$
  • $$7$$ , $$-1$$
  • $$1$$ , $$-7$$
  • $$1$$ , $$7$$
  • $$-7$$ , $$-1$$
Find the values of the $$x+y$$ and $$x-y$$ from the examples given below without solving for x and y

$$7x-5y=-1; \, \, 5x-7y=-11$$
  • $$- 1$$, $$-5$$
  •    $$1$$, $$-5$$
  •     $$5$$,   $$1$$
  • $$ 5 $$,   $$ -1 $$
Solve the following simultaneous equations.
$$3x+4y=18; \, \, 4x+3y=17$$
  • $$x = 2$$, $$y = 3$$
  • $$x = -2$$, $$y = 5$$
  • $$x=4$$, $$y=3$$
  • $$x=-2$$, $$y=-3$$
Solve the following simultaneous equations:
$$15x-17y=28;\, \, 15y-17x+36=0$$
  • $$x=3$$, $$y=1$$
  • $$x=-3$$, $$y=1$$
  • $$x=6$$, $$y=2$$
  • $$x=2$$, $$y=3$$
Solve following pair of equations by equating the coefficient method:
$$2x\, -\, y\, =\, 9$$
$$3x\, -\, 7y\, =\, 19$$
  • $$x=2$$ , $$y=1$$
  • $$x=4$$ , $$y=-1$$
  • $$x=3$$ , $$y=2$$
  • $$x=7$$ , $$y=-8$$
Solve the following simultaneous equation:
$$4x+5y = 10; \, \, 5x+4y=17$$

  • $$x=3\, \, y=2$$
  • $$x=1\, \, y=4$$
  • $$x=0\, \, y=3$$
  • $$x=5\, \, y=-2$$
Solve the given pair of equations by substitution method:
$$x\, +\, 5y\, =\, 18$$
$$3x\, +\, 2y\, =\, 41$$
  • $$(13 , 1)$$
  • $$(1 , 3)$$
  • $$(12 , 17)$$
  • $$(9 , 16)$$
Solve the given pair of equations by substitution method:
$$x\, +\, y\, =\, 11$$
$$x\, -\, y\, =\, -3$$
  • $$(4 , 6)$$
  • $$(3 , 11)$$
  • $$(4 , 7)$$
  • $$(6 , 2)$$
Solve the given pair of equations by substitution method:
$$4a\, -\, b\, =\, 10$$
$$2a\, +\, 3b\, =\, 12$$
  • $$a = 0, b = 5$$
  • $$a = 7, b = 6$$
  • $$a = 1, b = 7$$
  • $$a = 3, b = 2$$
Solve following pair of equations by equating the coefficient method:
$$8x\, =\, 5y$$
$$13x\, =\, 8y\, +\, 1$$
  • $$x=3$$ and $$y=1$$
  • $$x=5$$ and $$y=8$$
  • $$x=6$$ and $$y=2$$
  • $$x=9$$ and $$y=-5$$
Solve the given pair of equations by substitution method:
$$x\, -\, 4y\, =\, -8$$
$$x\, -\, 2y\, =\, 0$$
  • $$(2 , -1)$$
  • $$(7, -6)$$
  • $$(8 , 4)$$
  • $$(-3 , 6)$$
Solve the given pair of equations by substitution method:
$$2a\, +\, 3b\, =\, 6$$
$$3a\, +\, 5b\, =\, 15$$
  • $$a = 3, b = 2$$
  • $$a = -15, b = 12$$
  • $$a = 8, b = 15$$
  • $$a = -7, b = 3$$
Solve the following pairs of equations:
$$ \displaystyle \dfrac{x+1}{4}= \displaystyle \dfrac{2}{3}\left ( 1-2y \right ) $$

$$ \displaystyle \dfrac{2+5y}{3}= \displaystyle \dfrac{x}{7} -2 $$
  • $$ x= 8,\:y= -1 $$
  • $$ x= 3,\:y= -1 $$
  • $$ x= 7,\:y= -1 $$
  • $$ x= 9,\:y= -1 $$
Solve the given pair of equations by substitution method:
$$x\, +\, y\, =\, 0$$
$$y\, -\, x\, =\, 6$$
  • $$(2 , 7)$$
  • $$(-3 , 3)$$
  • $$(4 , 9)$$
  • $$(-6 , 2)$$
Solve the following pair of simultaneous equations:
$$\displaystyle \frac{x}{3}\, +\, \frac{x\, +\, y}{6}\, =\,3;\, \frac{y}{3}\, -\, \frac{x\, -\, y}{2}\, =\, 6$$
  • $$x=2,y=-5$$
  • $$x=7,y=4$$
  • $$x=6,y=3$$
  • $$x=3,y=9$$
Solve the following pair of simultaneous equations:
$$4x\, -\, 3y\, =\, 8$$
$$3x\, -\, 4y\, =\, - 1$$
  • $$x=3,y=-1$$
  • $$x=5,y=4$$
  • $$x=-4,y=2$$
  • $$x=7,y=-6$$
Solve the following pair of simultaneous equations:
$$8a\, -\, 7b\, =\, 1$$
$$4a\, =\, 3b\, +\, 5$$
  • $$a=8 , b=9$$
  • $$a=3 , b=-8$$
  • $$a=7 , b=-6$$
  • $$a=1 , b=-1$$
Solve the following pair of linear (simultaneous) equations by the method of elimination: 
$$y= 4x-7$$
$$16x-5y= 25$$
  • $$\displaystyle x= \displaystyle \frac{3}{2},\displaystyle y= 6$$
  • $$\displaystyle x= \displaystyle \frac{5}{2},\displaystyle y= 3$$
  • $$\displaystyle x= \displaystyle \frac{7}{4},\displaystyle y= 2$$
  • $$\displaystyle x= \displaystyle \frac{9}{2},\displaystyle y= 0$$
Solve the following pair of simultaneous equations:
$$5x\, -\, 6y\, =\, 8$$
$$7y\, -\, 15x\,=\, 9$$
  • (1 , 3)
  • (6 , -1)
  • (-2 , -3)
  • (3 , -5)
Solve following pair of equations by equating the coefficient method:
$$3x\, -\, 7y\, =\, 35$$
$$2x\, +\, 5y\, =\, 4$$
  • $$x=5 , y=-1$$
  • $$x=4 , y=- 1$$
  • $$x=5 , y=-7$$
  • $$x=7,y=-2$$
Solve following pair of equations by equating the coefficient method:
$$x\, +\, 2y\, =\, 11$$
$$2x\, -\, y\, =\, 2$$
  • $$x=3 , y=4$$
  • $$x=5 , y=4$$
  • $$x=-1 , y=-1$$
  • $$x=6 , y=-4$$
Solve the following pair of simultaneous equations:
$$\displaystyle \frac{x}{3}\, =\, \frac{y}{2}\,;\, \frac{2x}{3}\, -\, \frac{y}{2}\, =\, 2$$
  • $$(-3 , 4)$$
  • $$(1 , 9)$$
  • $$(6 , 4)$$
  • $$(3 , 8)$$
Solve the following pair of simultaneous equations:
$$\displaystyle\frac{x}{2}\, -\,\frac{y}{3}\, =\, 2\,;\, \frac{x}{5}\, +\, \frac{y}{3}\, =\, 15$$
  • $$x = \displaystyle 24\frac{2}{7}, y = \displaystyle 30\frac{3}{7}$$
  • $$x = \displaystyle 12\frac{1}{3}, y = \displaystyle 10\frac{2}{3}$$
  • $$x = \displaystyle 16\frac{7}{6}, y = \displaystyle 13\frac{4}{3}$$
  • $$x = \displaystyle 2\frac{22}{7}, y = \displaystyle 12\frac{13}{17}$$
Solve for $$x$$ and $$y$$:
$$4x= 17-\displaystyle \frac{x-y}{8}$$
$$2y+x= 2+\displaystyle \frac{5y+2}{3}$$
  • $$x= 4;y= -4$$
  • $$x= 1;y= -6$$
  • $$x= -6;y= -3$$
  • $$x= 2;y= -7$$
Solve the following pair of simultaneous equations:
$$3x\, +\, 5(y\, +\, 2)\, =\, 1$$
$$3x\, +\, 8y\, =\, 0$$
  • $$(-8 , 3)$$
  • $$(-4 , 9)$$
  • $$(1 , -3)$$
  • $$(0 , -9)$$
Solve the following pair of simultaneous equations
$$3x\, +\,2y\, =\, -1$$
$$6y\, =\, 5(1\, -\, x)$$
  • $$x=- 2$$ and $$y=2.5$$
  • $$x=- 1$$ and $$y=3$$
  • $$x=6$$ and $$y=1.5$$
  • $$x=- 7$$ and $$y=-4$$
Solve the following pair of simultaneous equations:
$$\displaystyle \frac{x\, -\, 1}{2}\, +\, \frac{y\, +\, 1}{5}\, =\, 4\frac{1}{5}\,;\, \frac{x\, +\,y}{3}\, =\, y\, -\, 1$$
  • $$x=7,y=5$$
  • $$x=2,y=4$$
  • $$x=0,y=6$$
  • $$x=5,y=3$$
Find two numbers such that twice of the first added to the second gives $$21$$, and twice the second added to the first gives $$27$$.
  • $$5$$ and $$11$$
  • $$9$$ and $$16$$
  • $$3$$ and $$18$$
  • $$3$$ and $$17$$
A man's age is three times that of his son and in twelve years he will be twice as old as his son would be. What are their present ages?
  • Present age of man is $$60$$ years and

    Present age of son is $$20$$ years
  • Present age of man is $$45$$ years and

    Present age of son is $$15$$ years
  • Present age of man is $$54$$ years and

    Present age of son is $$18$$ years
  • Present age of man is $$36$$ years and

    Present age of son is $$12$$ years
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers