CBSE Questions for Class 12 Commerce Applied Mathematics Linear Equations Quiz 5 - MCQExams.com

Solve the following equations by substitution method.
$$3y-2x=9; \, \, 2x+5y=15$$
  • $$x = 0, y= 2$$
  • $$x = 5, y= 2$$
  • $$x = 1, y= 3$$
  • $$x = 0, y= 3$$
Solve the following equations by substitution method.
$$x=2y-1; \, \, y=2x-7$$
  • $$x = 8, y= 3$$
  • $$x = 2, y= 3$$
  • $$x = 5, y= 3$$
  • $$x = 1, y= 3$$
Solve the following equations by substitution method.
$$3a-2b=-10; \, \, 2a+3b=2$$
  • $$a = -2, b= 2$$
  • $$a = -1, b= 2$$
  • $$a= -4, b= 2$$
  • $$a = -7, b= 2$$
Solve the following simultaneous equations by the method of equating coefficients.$$5x+7y=17;\,\, 7x+5y=19$$
  • $$x = 1, y= 1$$
  • $$x = 4, y= 1$$
  • $$x = 3, y= 1$$
  • $$x = 2, y= 1$$
Solve the following equations by substitution method.
$$5x + 3y = 21; 2x - y = 4$$
  • $$x = 3, y = 2$$
  • $$x =- 3, y = 2$$
  • $$x = 3, y = -2$$
  • None of these
Solve the following simultaneous equations by the method of equating coefficients.$$\displaystyle \frac{x}{3}+5y=13; \, \, 2x+\frac{y}{2}=19$$
  • $$x = 1, y= 2$$
  • $$x = 9, y= 2$$
  • $$x = 4, y= 2$$
  • $$x = 8, y= 2$$
Solve the following simultaneous equations by the method of equating coefficients.$$x-2y=-10; \, \, 3x-5y=-12$$
  • $$x = 16, y= 18$$
  • $$x = 32, y= 18$$
  • $$x = 26, y= 18$$
  • $$x = 22, y= 18$$
Find the values of $$(x+y)$$ and $$(x-y) $$without actually solving for $$x$$ and $$y$$.$$8x-7y=11; \, \, 7x-8y=4$$
  • $$x+y = 2, x-y= 1$$
  • $$x+y = 1, x-y= 1$$
  • $$x+y = 7, x-y= 1$$
  • $$x+y = 3, x-y= 1$$
Find the values of $$(x+y)$$ and $$(x-y) $$without actually solving for $$x$$ and $$y$$. 
$$13x+15y=114 \quad and  \quad15x+13y=110$$
  • $$x+y= 9, x-y= -2$$
  • $$x+y= 8, x-y= -2$$
  • $$x+y= 3, x-y= -2$$
  • $$x+y= 1, x-y= -2$$
Find the values of $$(x+y)$$ and $$(x-y) $$without actually solving for $$x$$ and $$y$$.$$15x-12y=69; \, \, 12x-15y=39$$
  • $$x+y = 10,x- y= 4$$
  • $$x+y = 5,x- y= 4$$
  • $$x+y = 13,x- y= 4$$
  • $$x+y = 19,x- y= 4$$
Find the values of $$(x+y)$$ and $$(x-y) $$without actually solving for $$x$$ and $$y$$.$$9x+11y=78; \, \, 11x+9y=82$$
  • $$x+y = 2, x-y= 2$$
  • $$x+y = 8, x-y= 2$$
  • $$x+y = 7, x-y= 2$$
  • $$x+y = 3, x-y= 2$$
Solve the following simultaneous equations by the method of equating coefficients.$$4x+y=34; \, \, x+4y=16$$
  • $$x = 8, y= 2$$
  • $$x = 4, y= 2$$
  • $$x = 9, y= 2$$
  • $$x = 2, y= 2$$
Solve the following simultaneous equations by the method of equating coefficients.

$$\displaystyle \frac{2x-y}{3}+3x-2y=3; \, \, 4x-3y+\frac{5x-4y}{4}=1$$
  • $$x = 4, y= 5$$
  • $$x = 3, y= 5$$
  • $$x = 7, y= 5$$
  • $$x = 9, y= 5$$
Solve for $$x$$ and $$y$$.
$$5x+6y=7x+3y=3(x+6y-6)$$
  • $$x =1 , y= 3$$
  • $$x = 2, y= 6$$
  • $$x = 3, y= 2$$
  • None of these
Solve the following simultaneous equations:
$$\displaystyle \frac{x}{3}+\frac{y}{4}=4; \, \, \frac{5x}{6}-\frac{y}{8}=4$$
  • $$x = 5, y= 8$$
  • $$x = 2, y= 8$$
  • $$x = 1, y= 8$$
  • $$x = 6, y= 8$$
Solve the following simultaneous equation. 
$$12x+17y=53; \, \, 17x+12y=63$$
  • $$x = 3,\, y=1$$
  • $$x = 2,\, y=1$$
  • $$x = 1,\, y=1$$
  • $$x = 9,\, y=1$$
Solve the following pair of equations $$64p-45q=289; \, \, 45p-64q=365$$
  • $$p=0, \, q=-5$$
  • $$p=4, \, q=-5$$
  • $$p=1, \, q=-5$$
  • $$p=2, \, q=-5$$
Solve the following pair of equations $$31x-42y=51; \, \, 42x-31y=95$$
  • $$x=3, \, y=1$$
  • $$x=2, \, y=1$$
  • $$x=1, \, y=1$$
  • $$x=6, \, y=1$$
From the following figure, we can say: 
$$\displaystyle \frac{x}{3}+\frac{y}{4}=4; \, \, \frac{5x}{6}-\frac{y}{8}=4 $$
  • $$x=1, \, y=8$$
  • $$x=7, \, y=8$$
  • $$x=6, \, y=8$$
  • $$x=3, \, y=8$$
Solve the following pair of equations $$\displaystyle \frac{2x}{15}+\frac{y}{5} =4; \, \, \frac{x}{3}=\frac{y}{2}$$
  • $$x=15, \, y=10$$
  • $$x=20, \, y=10$$
  • $$x=5, \, y=10$$
  • $$x=13, \, y=10$$
Solve the following pair of equations. $$35x-37y=68; \, \, 35y-37x+76=0$$
  • $$x=2, \, y=1$$
  • $$x=3, \, y=1$$
  • $$x=6, \, y=1$$
  • $$x=1, \, y=1$$
Find the values of $$(m+n)$$ and $$(m-n) $$without actually solving for $$m$$ and $$n$$.
$$17m+13n=133; \, \, 13m+17n=137$$
  • $$m+n =5, m-n= -1$$
  • $$m+n =1, m-n= -1$$
  • $$m+n =2, m-n= -1$$
  • $$m+n =9, m-n= -1$$
Solve the following pair of equations.
$$4(x+2)+5(y+2)=20$$ and $$5x+4y=7$$
  • $$x=7, \, y=-2$$
  • $$x=4, \, y=-2$$
  • $$x=3, \, y=-2$$
  • $$x=2, \, y=-2$$
Solve the following pair of equations. $$25x-24y=197; \, \,  24x-25y=195$$
  • $$x=1,\, y=-3$$
  • $$x=9,\, y=-3$$
  • $$x=5,\, y=-3$$
  • $$x=3,\, y=-3$$
Solve the following pair of equations $$\displaystyle \frac{x}{8} -\frac{y}{7} = \frac{17}{28}; \, \, \frac{x}{7} -\frac{y}{8}=1$$
  • $$x=5, \, y=8$$
  • $$x=19, \, y=8$$
  • $$x=12, \, y=8$$
  • $$x=14, \, y=8$$
Solve the following simultaneous equations:
$$\displaystyle \frac{2x}{3}+\frac{y}{4}=12; \, \, \frac{4x}{3} - \frac{9y}{4}=2$$
  • $$x=12, \, y=5$$
  • $$x=15, \, y=8$$
  • $$x=13, \, y=4$$
  • $$x=14, \, y=9$$
The ratio of the present ages of mother and son is $$ 12: 5$$. The mother's age at the time of the birth of the son was $$21$$ years. Find their present ages.
  • mother age $$=$$ $$36$$ years, son age $$=$$ $$15$$ years
  • mother age $$=$$ $$56$$ years, son age $$=$$ $$5$$ years
  • mother age $$=$$ $$46$$ years, son age $$=$$ $$25$$ years
  • mother age $$=$$ $$47$$ years, son age $$=$$ $$26$$ years
A two-digit number is 3 more than six times the sum of its digits. If 18 is added to the number obtained by interchanged by interchanging the digits, we get the original number. Find the number.
  • 25
  • 45
  • 75
  • None of these
From the following figure, we can say: 
$$\displaystyle \frac{2x}{3}+\frac{3y}{2}=8\frac{1}{3}; \, \, \frac{3x}{2}+\frac{2y}{3}=13\frac{1}{3}$$
  • $$x=1, \, y=4$$
  • $$x=8, \, y=3$$
  • $$x=6, \, y=5$$
  • None of these
Point $$A$$ and $$B$$ are $$70\ km$$ apart on a highway. A car starts from $$A$$ and another car starts from $$B$$ at the same time. If they travel in the same direction, they meet in $$7$$ hours, but if they travel towards each other they meet in one hour. What are their speeds?
  • $$30\ km/hr$$ and $$40\ km/hr$$
  • $$36\ km/hr$$ and $$40\ km/hr$$
  • $$19\ km/hr$$ and $$20\ km/hr$$
  • $$40\ km/hr$$ and $$50\ km/hr$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers