Explanation
$$Sum\quad can\quad be\quad 2,3,4,5,6,7,8,9,10,11,12\\ P(2)=\dfrac { 1 }{ 6\times6 } =\dfrac { 1 }{ 36 } \\$$
$$ P(3)=\dfrac { 2 }{ 6\times6 } =\dfrac { 2 }{ 36 } \\$$
$$ P(4)=\dfrac { 1+1+1 }{ 6\times6 } =\dfrac { 3 }{ 36 } \\$$
$$ P(5)=\dfrac { 2+2 }{ 6\times6 } =\dfrac { 4 }{ 36 } \\$$
$$ P(6)=\dfrac { 2+2+1 }{ 6\times6 } =\dfrac { 5 }{ 36 } \\$$$$ P(7)=\dfrac { 2+2+2 }{ 6\times6 } =\dfrac { 6 }{ 36 } \\$$
$$ P(8)=\dfrac { 2+2+2+1 }{ 6\times6 } =\dfrac { 5 }{ 36 } \\$$
$$ P(9)=\dfrac { 2+2+2+2 }{ 6\times6 } =\dfrac { 4 }{ 36 } \\$$
$$ P(10)=\dfrac { 2+2+2+2+1 }{ 6\times6 } =\dfrac { 3 }{ 36 } \\$$
$$ P(11)=\dfrac { 2+2+2+2+2 }{ 6\times6 } =\dfrac { 2 }{ 36 } \\$$
$$ P(12)=\dfrac { 1 }{ 6\times6 } =\dfrac { 1 }{ 36 } \\$$
$$ Expectation\quad =\quad \dfrac { 1 }{ 36 } (2+6+12+20+30+42+40+36+30+22+12)=\dfrac { 252 }{ 36 } =7\\ \\ \\ \\ \\ $$
Please disable the adBlock and continue. Thank you.