CBSE Questions for Class 12 Commerce Applied Mathematics Probability Distribution And Its Mean And Variance Quiz 3 - MCQExams.com

If the variance of the random variable $$X$$ is $$4$$, then the variance of the random variable $$5X+10$$ is
  • $$100$$
  • $$10$$
  • $$50$$
  • $$25$$
From a lot of 10 items containing 3 defectives, a sample of 4 items is drawn at random without replacement. The expected number of good items is
  • $$3$$
  • $$2.8$$
  • $$1.2$$
  • $$1.8$$
If the probability distribution of a random variable x is
$$X=x_{1}:\quad  -2 \quad  -1    \quad   0   \quad    1  \quad     2  \quad     3$$
$$p(X=x_{1}):  0.1  \ \ \ \ \ \    k  \ \ \ \   0.2   \ \ \    2k  \ \   0.3   \  \  \    k$$       then the mean of x is
  • $$0.6$$
  • $$0.8$$
  • $$1.0$$
  • $$0.3$$
The Probability distribution of a random variable $$X$$ is given by $$P(X=x) =  0.1 ,0.1, 0.1 ,0.3 ,0.4$$ for $$(X=x) = 4,3,2,1,0$$. The variance of $$X$$ is 
  • $$1. 76$$
  • $$2.45$$
  • $$3.2$$
  • $$4.8$$
If a random variable $$x$$ has the following probability distribution
$$X=x_{i} : \quad \quad0  \ \quad\quad 1 \ \quad\quad  2  \ \quad 3$$
$$P(X=x_{i}): \ 2K^{2},3K^{2},5K^{2},6K^{2}$$
then the value of $$K$$ is
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{-1}{4}$$
  • $$\displaystyle \pm\frac{1}{4}$$
  • $$\displaystyle \frac{1}{2}$$
The value of $$C$$ for which $$P( X=k)= Ck^{2}$$ can serve the probability function of a random variable $$X$$ that takes values $$0, 1, 2, 3, 4$$ is
  • $$\displaystyle \frac{1}{30}$$
  • $$\displaystyle \frac{1}{10}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{1}{15}$$
If the probability distribution of a random variable $$x$$ is
$$X=x_{1}:\quad  -2 \quad  -1    \quad   0   \quad    1  \quad     2  \quad     3$$
$$p(X=x_{1}):  0.1  \ \ \ \ \ \    k  \ \ \ \   0.2   \ \ \    2k  \ \   0.3   \  \  \    k$$, then the variance of $$x$$ is
  • $$2.16$$
  • $$2.8$$
  • $$\sqrt{2.16} $$
  • $$

    \sqrt{2.8}$$
If a random variable $$x$$ has the following probability distribution
$$X=x_{i} : \quad \quad0  \ \quad\quad 1 \ \quad\quad  2  \ \  \quad 3$$
$$P(X=x_{i}): \ 2K^{2}\ \ 3K^{2}\ \ \ 5K^{2}\ \ 6K^{2}$$
Then find the mean.
  • $$\displaystyle \frac{33}{16}$$
  • $$\displaystyle \frac{31}{16}$$
  • $$\displaystyle \frac{35}{16}$$
  • $$\displaystyle \frac{29}{16}$$
The probability distribution of a random variable $$X$$ is given below, then $$K =$$
$$X=x_{1}: \quad 1 \quad , 2, \quad 3, \quad 4$$
$$p(X=x_{1}):2k , 4k   \  \ ,3k ,  \ \  \   k$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{5}$$
  • $$\dfrac{1}{10}$$
  • $$\dfrac{1}{15}$$
A random variable $$X$$ takes the values $$-1, 0, +1$$. Its mean is $$0.6$$. If $$P(X=0)=0.2$$, then find $$P(X=1)$$ and $$P(X=-1)$$
  • $$0.2, 0.8$$
  • $$0.3, 0.7$$
  • $$0.7, 0.1$$
  • $$0.4, 0.2$$
The value of k, if the probability distribution of a $$X=x:1  ,  2    ,  3$$ random variable X is$$p(X=x):\dfrac{1}{k} , \dfrac{2}{k} , \dfrac{3}{k}$$ is
  • $$\dfrac{1}{6}$$
  • $$6$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{\sqrt{6}}$$
A random variable $$X$$ has the following probability distribution, then $$C =$$
$$X=x: 1  ,2 , 3 , 4$$, $$P(X=x) :C , 2C, 3C ,4C$$
  • $$0.1$$
  • $$0.2$$
  • $$10$$
  • $$20$$
A random variable $$X$$ takes the values $$0,\ 1,\ 2,\ 3$$ and its mean is$$1.3$$. If $$P(X=3)=2P(X=1)$$ and $$P(X=2)=0.3$$ , then $$P(X=0)=$$
  • $$0.1$$
  • $$0.2$$
  • $$0.3$$
  • $$0.4$$
The variance of the random variable $$x$$ whose probability distribution is given by
$$X=x : \quad \quad 0    \quad  1  \quad  2   \quad 3  $$ 
$$p(X=x): \  \  \ \dfrac{1}{3}  \  \  \   \dfrac{1}{2}  \ \  \  0  \  \  \  \dfrac{1}{6}$$
  • $$0.5$$
  • $$1$$
  • $$1.5$$
  • $$2.0$$
If $$X$$ is a random variable with the following probability distribution given below:
 $$X=x$$ $$0$$$$1$$ $$2$$ $$3$$ 
$$P(X=x)$$  $$k$$$$3k$$ $$3k$$ $$k$$
Then the value of $$k$$ and its variance are:
  • $$\dfrac{1}{8},\dfrac{22}{27}$$
  • $$\dfrac{1}{8},\dfrac{23}{27}$$
  • $$\dfrac{1}{8},\dfrac{8}{9}$$
  • $$\dfrac{1}{8},\dfrac{3}{4}$$
A random variable X follows the following distribution
$$X=x_{i}: \quad  \  \ 1  ,  \ 2 , \  3, \   4 $$
$$p(X=x_{i}):\dfrac{2}{6}, \dfrac{3}{6} , \dfrac{0}{6}, \dfrac{1}{6}$$
, then the mean and variance are 
  • $$1, 1$$
  • $$1, 2$$
  • $$2, 1$$
  • $$2, 2$$
A random variable X has its range $${1, 2, 3}$$ with respective probabilities $$P(X=1)=K, \  P(X=2)=2K, P(X=3)=3K,$$ then the value of K is
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{5}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{8}$$
Let X be the random variable with the probability distribution function $$f(x)=\dfrac{e^{-4}4^{x}}{x!};x=0,1,2,3,....$$ then the standard deviation of X is
  • $$2$$
  • $$4$$
  • $$16$$
  • $$\sqrt{2}$$
A random variable $$X$$ has its range $$X = {0, 1, 2}$$ with respective probabilities $$P(X=0)=3K^{3}, P(X=1)=4K-10K^{2}, P(X=2)=5K-1$$ , then the value of $$K$$ is
  • $$2$$
  • $$1$$
  • $$\dfrac{1}{3}$$
  • $$2,1,\dfrac{1}{3}$$
If a random variable X takes values$$(-1)^{k}2^{k}/k;k=1,2,3,....$$with probabilities  $$P(X=k)=\dfrac{1}{2^{k}}$$then E(X)=
  • $$log \ 2$$
  • $$log \ e$$
  • $$log \ \left ( \dfrac{1}{2} \right )$$
  • $$log \ \left ( \dfrac{1}{4} \right )$$
If F(x) is the cumulative distributive function of a random variable x whose range is from $$-\alpha $$ to $$+\alpha $$, then $$P(X< -\alpha )$$
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$0$$
  • $$\dfrac{1}{3}$$
A random variable $$X$$ takes value $$0, 1, 2$$. Its mean is $$1.3$$. If $$P(X=0)=0.2$$, then $$P(X=2)=$$
  • $$0.3$$
  • $$0.4$$
  • $$0.5$$
  • $$0.2$$
Let the discrete random variable $$X = x$$ has the probabilities given by $$\displaystyle \frac{x}{6}$$ for $$x=0, 1, 2, 3$$, then its mean is
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{5}{3}$$
  • $$\displaystyle\frac{7}{3}$$
  • $$\displaystyle \frac{9}{3}$$
If the range of the random variable $$X$$ is from  $$-\alpha$$ to $$+\alpha$$ , the limits of $$F(X)$$ are
  • $$0$$ to $$\alpha$$
  • $$-\alpha $$ to $$ 3 $$
  • $$-1 $$ to $$+1$$
  • $$0 $$ to $$ 1$$
The range of a random variable $$X$$ is $$1, 2, 3, 4 ....$$
and the probabilities are given by  $$\displaystyle p(X=k)=\frac{c^{k}}{k!}k=1,2,3,4....,$$, then the value of $$C$$ is
  • $$2 2$$
  • $$\log e$$
  • $$\log_e 2$$
  • 4
A person who tosses an unbiased coin gains two points for turning up a head and loses one point for a tail. If three coins are tossed and the total score $$X$$ is observed, then the range of $$X$$ is
  • $${0,3,6}$$
  • $${-3,0,3}$$
  • $${-3,0,3,6}$$
  • $${-3,3,6}$$
A discrete random variable $$X$$, can take all possible integer values from $$1$$ to $$K$$, each with a probability $$1/K$$. Its mean is
  • $$K$$
  • $$K+1$$
  • $$K/2$$
  • $$K/4$$
In a World Cup final match against Srilanka, for six times Sachin Tendulkar hits a six out of 30 balls he plays. What is the probability that in a given throw, the ball does not hit a six?
  • $$\frac{1}{4}$$
  • $$\frac{5}{4}$$
  • $$\frac{4}{5}$$
  • $$\frac{3}{4}$$
The probability distribution of random variable X: number of heads , when a fair coin is tossed twice is given by 
$$x$$$$0$$$$1$$$$2$$
p(x)$$p_1$$$$p_2$$$$p_3$$
then  
  • $$\sum p_i=0$$
  • $$\Pi p_i=1$$
  • $$\sum p_i=1$$
  • $$\sum p_i=3$$
A car hire firm has $$2$$ cars which it hires out day by day. If the number of demands for a car on each day follows poisson distribution with parameter $$1.5$$, then the probability that some demand is refused is
  • $$1.12 \times e^{-1.5}$$
  • $$1.2.5 \times e^{-1.5}$$
  • $$1-3.625 \times e^{-1.5}$$
  • $$3.625 \times e^{-1.5}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers