Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Probability Distribution And Its Mean And Variance Quiz 3 - MCQExams.com

If the variance of the random variable X is 4, then the variance of the random variable 5X+10 is
  • 100
  • 10
  • 50
  • 25
From a lot of 10 items containing 3 defectives, a sample of 4 items is drawn at random without replacement. The expected number of good items is
  • 3
  • 2.8
  • 1.2
  • 1.8
If the probability distribution of a random variable x is
X=x1:210123
p(X=x1):0.1      k    0.2   2k  0.3   k       then the mean of x is
  • 0.6
  • 0.8
  • 1.0
  • 0.3
The Probability distribution of a random variable X is given by P(X=x)=0.1,0.1,0.1,0.3,0.4 for (X=x)=4,3,2,1,0. The variance of X is 
  • 1.76
  • 2.45
  • 3.2
  • 4.8
If a random variable x has the following probability distribution
X=xi:0 1 2 3
P(X=xi): 2K2,3K2,5K2,6K2
then the value of K is
  • 14
  • 14
  • ±14
  • 12
The value of C for which P(X=k)=Ck2 can serve the probability function of a random variable X that takes values 0,1,2,3,4 is
  • 130
  • 110
  • 13
  • 115
If the probability distribution of a random variable x is
X=x1:210123
p(X=x1):0.1      k    0.2   2k  0.3   k, then the variance of x is
  • 2.16
  • 2.8
  • 2.16
  • 2.8
If a random variable x has the following probability distribution
X=xi:0 1 2  3
P(X=xi): 2K2  3K2   5K2  6K2
Then find the mean.
  • 3316
  • 3116
  • 3516
  • 2916
The probability distribution of a random variable X is given below, then K=
X=x1:1,2,3,4
p(X=x1):2k,4k  ,3k,   k
  • 14
  • 15
  • 110
  • 115
A random variable X takes the values 1,0,+1. Its mean is 0.6. If P(X=0)=0.2, then find P(X=1) and P(X=1)
  • 0.2,0.8
  • 0.3,0.7
  • 0.7,0.1
  • 0.4,0.2
The value of k, if the probability distribution of a X=x:1,2,3 random variable X isp(X=x):1k,2k,3k is
  • 16
  • 6
  • 13
  • 16
A random variable X has the following probability distribution, then C=
X=x:1,2,3,4, P(X=x):C,2C,3C,4C
  • 0.1
  • 0.2
  • 10
  • 20
A random variable X takes the values 0, 1, 2, 3 and its mean is1.3. If P(X=3)=2P(X=1) and P(X=2)=0.3 , then P(X=0)=
  • 0.1
  • 0.2
  • 0.3
  • 0.4
The variance of the random variable x whose probability distribution is given by
X=x:0123 
p(X=x):   13   12   0   16
  • 0.5
  • 1
  • 1.5
  • 2.0
If X is a random variable with the following probability distribution given below:
 X=x 01 2 3 
P(X=x)  k3k 3k k
Then the value of k and its variance are:
  • 18,2227
  • 18,2327
  • 18,89
  • 18,34
A random variable X follows the following distribution
X=xi:  1, 2, 3, 4
p(X=xi):26,36,06,16
, then the mean and variance are 
  • 1,1
  • 1,2
  • 2,1
  • 2,2
A random variable X has its range 1,2,3 with respective probabilities P(X=1)=K, P(X=2)=2K,P(X=3)=3K, then the value of K is
  • 14
  • 15
  • 16
  • 18
Let X be the random variable with the probability distribution function f(x)=e44xx!;x=0,1,2,3,.... then the standard deviation of X is
  • 2
  • 4
  • 16
  • 2
A random variable X has its range X=0,1,2 with respective probabilities P(X=0)=3K3,P(X=1)=4K10K2,P(X=2)=5K1 , then the value of K is
  • 2
  • 1
  • 13
  • 2,1,13
If a random variable X takes values(1)k2k/k;k=1,2,3,....with probabilities  P(X=k)=12kthen E(X)=
  • log 2
  • log e
  • log (12)
  • log (14)
If F(x) is the cumulative distributive function of a random variable x whose range is from α to +α, then P(X<α)
  • 1
  • 12
  • 0
  • 13
A random variable X takes value 0,1,2. Its mean is 1.3. If P(X=0)=0.2, then P(X=2)=
  • 0.3
  • 0.4
  • 0.5
  • 0.2
Let the discrete random variable X=x has the probabilities given by x6 for x=0,1,2,3, then its mean is
  • 13
  • 53
  • 73
  • 93
If the range of the random variable X is from  α to +α , the limits of F(X) are
  • 0 to α
  • α to 3
  • 1 to +1
  • 0 to 1
The range of a random variable X is 1,2,3,4....
and the probabilities are given by  p(X=k)=ckk!k=1,2,3,4....,, then the value of C is
  • 22
  • loge
  • loge2
  • 4
A person who tosses an unbiased coin gains two points for turning up a head and loses one point for a tail. If three coins are tossed and the total score X is observed, then the range of X is
  • 0,3,6
  • 3,0,3
  • 3,0,3,6
  • 3,3,6
A discrete random variable X, can take all possible integer values from 1 to K, each with a probability 1/K. Its mean is
  • K
  • K+1
  • K/2
  • K/4
In a World Cup final match against Srilanka, for six times Sachin Tendulkar hits a six out of 30 balls he plays. What is the probability that in a given throw, the ball does not hit a six?
  • 14
  • 54
  • 45
  • 34
The probability distribution of random variable X: number of heads , when a fair coin is tossed twice is given by 
x012
p(x)p1p2p3
then  
  • pi=0
  • Πpi=1
  • pi=1
  • pi=3
A car hire firm has 2 cars which it hires out day by day. If the number of demands for a car on each day follows poisson distribution with parameter 1.5, then the probability that some demand is refused is
  • 1.12×e1.5
  • 1.2.5×e1.5
  • 13.625×e1.5
  • 3.625×e1.5
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers