Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Applied Mathematics Probability Distribution And Its Mean And Variance Quiz 7 - MCQExams.com

The probability distribution of a discrete random variable X is given below.

The value of K is
1802929_ac0ec6e56f094fb7ba72ddfb4be2199a.PNG
  • 8
  • 16
  • 32
  • 48
For the following probability distribution 
E(X2)
1802938_89b9721733b84a9d8600481c2477a9f8.PNG
  • 3
  • 5
  • 7
  • 10
Two cards are drawn randomly from a well-shuffled deck of 52 cards. If X denotes the number of aces, then find mean of X:
  • 513
  • 113
  • 37221
  • 213
A random variable X, takes the values 0,1,2 and 3. Mean of X is P(x=3)=2P(x=1) and P(x=2)=0.3, then P(x=0) is{
  • 0.2
  • 0.4
  • 0.3
  • 0.1
A random variable X has the probability distribution
X12345678
P(X)0.150.230.120.100.200.080.070.05
For the events, E={X is a prime number} and F=X<4, the probability P(EF) is
  • 0.87
  • 0.77
  • 0.35
  • 0.50
Suppose X is a random variable which takes values 0,1,2,3,... and P(X=r)=pqr where 0<p<1,q=1p and r=0,1,2,..., Then
  • P(Xn)=qn
  • P(Xm+n|Xm+n|Xm)=P(Xn)
  • P(X=m+n|Xm+n|Xm)=P(X=n)
  • None of these
In a series of 3 independent trials, the probability of exactly 2 success is 12 times as large as the probability of 3 successes. The probability of a success in each trail is
  • 15
  • 25
  • 35
  • 45
A random variable x assumes values which are numbers of the form nn+1 and n+1n, where 

n=1,2,3,.... lf P(x=nn+1)=P(x=n+1n)=(12)n+1, then
  • P(x<1)=P(x>1)
  • P(1/2<x<1)<P(x>1)
  • P(x>3/2)<P(x<1)
  • P(x>3/2)=0
If the range of a random variable X is {0,1,2,3,} with P(X=k)=(k+1)(a)3k for sample of 4 items is drawn at random without k0, then a=
  • 2/3
  • 4/9
  • 8/27
  • 16/81
If P(ui)i, where i=1,2,3, n, then lim is equal to 
  • 1
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{3}{4}
  • \displaystyle \frac{1}{4}
A fair coin is tossed 99 times. If X is the number of times heads occur then P(X = r) is maximum when r is
  • 49
  • 50
  • 51
  • none of these
Let numbers 1,2,3...4n be pasted on 4n blocks. The probability of drawing a number is proportional to r, then the probability of drawing an even number in one draw is \left ( n\in N \right )
  • \displaystyle\frac{n+1}{2n+1}
  • \displaystyle \frac{2n+1}{4n+1}
  • \displaystyle\frac{n+2}{n+3}
  • \displaystyle\frac{2n+3}{4n+1}
Let p be the probability that a man aged x years will die in a year time. The probability that out of n men \displaystyle A_{1},A_{2},A_{3},....,A_{n} each aged x years, \displaystyle A_{1} will die & will be the first to die, is
  • \displaystyle \frac{1-p^{n}}{n}
  • \displaystyle \frac{p}{n}
  • \displaystyle \frac{p\left ( 1-p \right )^{n-1}}{n}
  • \displaystyle \frac{1-\left ( 1-p \right )^{n}}{n}
A continuous random variable X has p.d.f f(x), then:
  • 0\le f(x)\le 1
  • f(x)\ge 0
  • f(x)\le 1
  • 0< f(x)< 1
A boy has 20% chance of hitting at a target. Let p denote the probability of hitting the target for the first time at the nth trial. If p satisfies the inequality 625p^{2} - 175p + 12 < 0 then value of n is
  • 1
  • 2
  • 3
  • 4
If X is a discrete random variable then which of the following is correct?
  • 0\le F(x)<1
  • F(-\infty )=0;F(\infty )\le 1
  • P\left[ X={ x }_{ n } \right] =F({ x }_{ n })-F({ x }_{ n-1 })
  • F(x) is a constant function
Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.
  • Mean = 0.1 and Variance = 0.7
  • Mean = 0.6 and Variance = 0.3
  • Mean = 0.49 and Variance = 0.37
  • Mean = 0 and Variance = 0.45
f(x)=\dfrac { A }{ \pi  } .\dfrac { 1 }{ 16+{ x }^{ 2 } } ,-\infty <x<\infty is a p.d.f of a continuous random variable X, then the value of A is:
  • 16
  • 8
  • 4
  • 1
What is P(Z is the product of two prime numbers) equal to ?
  • 0
  • \dfrac{1}{4}
  • \dfrac{1}{6}
  • \dfrac{1}{12}
The distribution of a random variable X is given below:  
X = x2-10123
P(X = x)\frac{1}{10}k\frac{1}{5}2k\frac{3}{10}k
  • \frac{1}{10}
  • \frac{2}{10}
  • \frac{3}{10}
  • \frac{7}{10}
The probability that the bag contains 2 balls of each colour, is 
  • \dfrac{1}{3}
  • \dfrac{1}{5}
  • \dfrac{1}{10}
  • \dfrac{1}{4}
Let the p.m.f. of a random variable X be -
P(x) = \dfrac {3 - x}{10} for x = -1, 0, 1, 2 otherwise
Then E(X) is _________.
  • 1
  • 2
  • 0
  • -1
The range of a random variable X = { 1,2,3,4,...} and the probabilities are given by P (X = k) = \frac{C^k}{  k! } ; k = 1,2,3,4..., then the value of C is
  • 2
  • log_2 e
  • log_e 2
  • 4
A random variable X has the following probability distribution:

X012345
P(X=x)\cfrac{1}{4}2a3a4a5a\cfrac{1}{4}
 Then P(1\le X\le 4) is:

  • \cfrac { 10 }{ 21 }
  • \cfrac { 2 }{ 7 }
  • \cfrac { 1 }{ 14 }
  • \cfrac { 1 }{ 2 }
The random variable X follows normal distribution 
f(x)=c{ e }^{ \cfrac { -\cfrac { 1 }{ 2 } { \left( x-100 \right)  }^{ 2 } }{ 25 }  }. Then the value of c is:
  • \sqrt { 2\pi }
  • \cfrac { 1 }{ \sqrt { 2\pi } }
  • 5\sqrt { 2\pi }
  • \cfrac { 1 }{5 \sqrt { 2\pi } }
If the range of random variable X is {0, 1, 2, 3, 4...} with p(X = k) = \frac{(k + 1)a}{3^k} for k>=0, then a = 
  • \frac{2}{3}
  • \frac{4}{9}
  • \frac{8}{27}
  • \frac{16}{81}
There are 5 men and 5 women in a party. In how many can 5 dancing pairs be selected ? (each dancing pair consists of 1 man and 1 women )
  • 120
  • 44
  • 32
  • 10
Two probability distributions of the discrete random variable X and Y are given below.
X 0 1 2 3
P\left( X \right)  
\dfrac { 1 }{ 5 }  \dfrac { 2 }{ 5 }  \dfrac { 1 }{ 5 }  
\dfrac { 1 }{ 5 }

Y 0 1 2 3
P\left( Y \right) \dfrac { 1 }{ 5 } \dfrac { 3 }{ 10 }  \dfrac { 2 }{ 5 }  \dfrac { 1 }{ 10 }
Then
  • E\left( { Y }^{ 2 } \right) =2E\left( X \right)
  • E\left( { Y }^{ 2 } \right) =E\left( X \right)
  • E\left( Y \right) =E\left( X \right)
  • E\left( { X }^{ 2 } \right) =2E\left( Y \right)
The total numbers of outcomes when three coins tossed once is .....
  • 2
  • 8
  • 6
  • 4
The random variable X has the following probability massfunction P[x=x]=k.\dfrac{2x}{x!}, x=0,1,2,3=0 , otherwise, then the value of K is 
  • \dfrac{1}{5}
  • \dfrac{2}{5}
  • \dfrac{3}{5}
  • \dfrac{4}{5}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers