CBSE Questions for Class 12 Commerce Applied Mathematics Probability Distribution And Its Mean And Variance Quiz 7 - MCQExams.com

The probability distribution of a discrete random variable X is given below.

The value of K is
1802929_ac0ec6e56f094fb7ba72ddfb4be2199a.PNG
  • 8
  • 16
  • 32
  • 48
For the following probability distribution 
$$E(X^2)$$
1802938_89b9721733b84a9d8600481c2477a9f8.PNG
  • 3
  • 5
  • 7
  • 10
Two cards are drawn randomly from a well-shuffled deck of $$52$$ cards. If $$X$$ denotes the number of aces, then find mean of $$X$$:
  • $$\cfrac{5}{13}$$
  • $$\cfrac{1}{13}$$
  • $$\cfrac{37}{221}$$
  • $$\cfrac{2}{13}$$
A random variable $$X$$, takes the values $$0,1,2$$ and $$3$$. Mean of $$X$$ is $$P(x=3)=2P(x=1)$$ and $$P(x=2)=0.3$$, then $$P(x=0)$$ is{
  • $$0.2$$
  • $$0.4$$
  • $$0.3$$
  • $$0.1$$
A random variable $$X$$ has the probability distribution
$$X$$12345678
$$P(X)$$0.150.230.120.100.200.080.070.05
For the events, $$E = \{X$$ is a prime number$$\}$$ and $$F = {X < 4}$$, the probability $$\displaystyle P\left ( E\cup F \right )$$ is
  • $$0.87$$
  • $$0.77$$
  • $$0.35$$
  • $$0.50$$
Suppose $$X$$ is a random variable which takes values $$0, 1, 2, 3, ...$$ and $$P(X=r)=pq^r$$ where $$0 < p < 1, q=1-p$$ and $$r=0, 1, 2, ...$$, Then
  • $$P(X\geq n)=q^n$$
  • $$P(X\geq m+n|X\geq m+n|X\geq m)=P(X\geq n)$$
  • $$P(X= m+n|X\geq m+n|X\geq m)=P(X= n)$$
  • None of these
In a series of 3 independent trials, the probability of exactly 2 success is 12 times as large as the probability of 3 successes. The probability of a success in each trail is
  • $$\dfrac{1}{5}$$
  • $$\dfrac{2}{5}$$
  • $$\dfrac{3}{5}$$
  • $$\dfrac{4}{5}$$
A random variable $$x$$ assumes values which are numbers of the form $$\displaystyle \frac{n}{n+1}$$ and $$\displaystyle \frac{n+1}{n}$$, where 

$$n=1, 2, 3,...$$. lf $$P\left(x=\displaystyle \frac{n}{n+1}\right)=P\left(x=\dfrac{n+1}{n}\right)=\left(\dfrac{1}{2} \right)^{n+1}$$, then
  • $$\mathrm{P}(\mathrm{x}<1)=\mathrm{P}(\mathrm{x}>1)$$
  • $$\mathrm{P}(1/2<\mathrm{x}<1)<\mathrm{P}(\mathrm{x}>1)$$
  • $$\mathrm{P}(\mathrm{x}>3/2)<\mathrm{P}(\mathrm{x}<1)$$
  • $$\mathrm{P}(\mathrm{x}>3/2)=0$$
If the range of a random variable $$X$$ is $$\{0, 1, 2, 3, \ldots\ldots\}$$ with $$\displaystyle P(X=k)=\dfrac{(k+1)(a)}{3^{k}}$$ for sample of $$4$$ items is drawn at random without $$\mathrm{k}\geq 0$$, then $$\mathrm{a}=$$
  • $$2/3$$
  • $$4/9$$
  • $$8/27$$
  • $$16/81$$
If $$\mathrm{P}(\mathrm{u}_{\mathrm{i}})\propto \mathrm{i}$$, where $$\mathrm{i}=1,2,3,\ \ldots \mathrm{n}$$, then $$\displaystyle \lim_{\mathrm{n}\rightarrow\infty}\mathrm{P}(\mathrm{w})$$ is equal to 
  • 1
  • $$\displaystyle \frac{2}{3}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{1}{4}$$
A fair coin is tossed $$99$$ times. If X is the number of times heads occur then P(X = r) is maximum when r is
  • $$49$$
  • $$50$$
  • $$51$$
  • none of these
Let numbers $$1,2,3...4n$$ be pasted on $$4n$$ blocks. The probability of drawing a number is proportional to $$r$$, then the probability of drawing an even number in one draw is $$\left ( n\in N \right )$$
  • $$\displaystyle\frac{n+1}{2n+1}$$
  • $$\displaystyle \frac{2n+1}{4n+1}$$
  • $$\displaystyle\frac{n+2}{n+3}$$
  • $$\displaystyle\frac{2n+3}{4n+1}$$
Let $$p$$ be the probability that a man aged $$x$$ years will die in a year time. The probability that out of $$n$$ men $$\displaystyle A_{1},A_{2},A_{3},....,A_{n}$$ each aged $$x$$ years, $$\displaystyle A_{1}$$ will die & will be the first to die, is
  • $$\displaystyle \frac{1-p^{n}}{n}$$
  • $$\displaystyle \frac{p}{n}$$
  • $$\displaystyle \frac{p\left ( 1-p \right )^{n-1}}{n}$$
  • $$\displaystyle \frac{1-\left ( 1-p \right )^{n}}{n}$$
A continuous random variable $$X$$ has p.d.f $$f(x)$$, then:
  • $$0\le f(x)\le 1$$
  • $$f(x)\ge 0$$
  • $$f(x)\le 1$$
  • $$0< f(x)< 1$$
A boy has 20% chance of hitting at a target. Let p denote the probability of hitting the target for the first time at the nth trial. If $$p$$ satisfies the inequality $$ 625p^{2} - 175p + 12 < 0$$ then value of $$n$$ is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
If $$X$$ is a discrete random variable then which of the following is correct?
  • $$0\le F(x)<1$$
  • $$F(-\infty )=0;F(\infty )\le 1$$
  • $$P\left[ X={ x }_{ n } \right] =F({ x }_{ n })-F({ x }_{ n-1 })$$
  • $$F(x)$$ is a constant function
Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of $$52$$ cards. Find the mean and variance of the number of red cards.
  • Mean $$= 0.1$$ and Variance $$= 0.7$$
  • Mean $$= 0.6$$ and Variance $$= 0.3$$
  • Mean $$= 0.49$$ and Variance $$= 0.37$$
  • Mean $$= 0$$ and Variance $$= 0.45$$
$$f(x)=\dfrac { A }{ \pi  } .\dfrac { 1 }{ 16+{ x }^{ 2 } } ,-\infty <x<\infty $$ is a p.d.f of a continuous random variable $$X$$, then the value of $$A$$ is:
  • $$16$$
  • $$8$$
  • $$4$$
  • $$1$$
What is P($$Z$$ is the product of two prime numbers) equal to ?
  • $$0$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{12}$$
The distribution of a random variable X is given below:  
X = x2-10123
P(X = x)$$\frac{1}{10}$$k$$\frac{1}{5}$$2k$$\frac{3}{10}$$k
  • $$\frac{1}{10}$$
  • $$\frac{2}{10}$$
  • $$\frac{3}{10}$$
  • $$\frac{7}{10}$$
The probability that the bag contains 2 balls of each colour, is 
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{5}$$
  • $$\dfrac{1}{10}$$
  • $$\dfrac{1}{4}$$
Let the p.m.f. of a random variable $$X$$ be -
$$P(x) = \dfrac {3 - x}{10}$$ for $$x = -1, 0, 1, 2 $$ otherwise
Then $$E(X)$$ is _________.
  • $$1$$
  • $$2$$
  • $$0$$
  • $$-1$$
The range of a random variable X = $${ 1,2,3,4,...}$$ and the probabilities are given by $$ P (X = k) = \frac{C^k}{  k! } $$ ; $$k = 1,2,3,4...,$$ then the value of C is
  • $$2$$
  • $$log_2 e$$
  • $$log_e 2$$
  • 4
A random variable $$X$$ has the following probability distribution:

$$X$$012345
$$P(X=x)$$$$\cfrac{1}{4}$$$$2a$$$$3a$$$$4a$$$$5a$$$$\cfrac{1}{4}$$
 Then $$P(1\le X\le 4)$$ is:

  • $$\cfrac { 10 }{ 21 } $$
  • $$\cfrac { 2 }{ 7 } $$
  • $$\cfrac { 1 }{ 14 } $$
  • $$\cfrac { 1 }{ 2 } $$
The random variable $$X$$ follows normal distribution 
$$f(x)=c{ e }^{ \cfrac { -\cfrac { 1 }{ 2 } { \left( x-100 \right)  }^{ 2 } }{ 25 }  }$$. Then the value of $$c$$ is:
  • $$\sqrt { 2\pi } $$
  • $$\cfrac { 1 }{ \sqrt { 2\pi } } $$
  • $$5\sqrt { 2\pi } $$
  • $$\cfrac { 1 }{5 \sqrt { 2\pi } } $$
If the range of random variable X is {0, 1, 2, 3, 4...} with p(X = k) = $$\frac{(k + 1)a}{3^k}$$ for $$k>=$$0, then a = 
  • $$\frac{2}{3}$$
  • $$\frac{4}{9}$$
  • $$\frac{8}{27}$$
  • $$\frac{16}{81}$$
There are $$5$$ men and $$5$$ women in a party. In how many can $$5$$ dancing pairs be selected ? (each dancing pair consists of $$1$$ man and $$1$$ women )
  • $$120$$
  • $$44$$
  • $$32$$
  • $$10$$
Two probability distributions of the discrete random variable $$X$$ and $$Y$$ are given below.
$$X$$ $$0$$ $$1$$ $$2$$ 3
$$P\left( X

\right)$$  
$$\dfrac { 1 }{ 5

} $$
$$\dfrac { 2 }{ 5

} $$
$$\dfrac { 1 }{ 5

}$$  
$$\dfrac { 1 }{ 5 }$$

$$Y$$ $$0$$ $$1$$ $$2$$ $$3$$
$$P\left( Y

\right)$$
$$\dfrac { 1 }{ 5 }$$ $$\dfrac { 3 }{ 10

} $$
$$\dfrac { 2 }{ 5

} $$
$$\dfrac { 1 }{ 10 }$$
Then
  • $$E\left( { Y }^{ 2 } \right) =2E\left( X \right)$$
  • $$E\left( { Y }^{ 2 } \right) =E\left( X \right)$$
  • $$E\left( Y \right) =E\left( X \right)$$
  • $$E\left( { X }^{ 2 } \right) =2E\left( Y \right) $$
The total numbers of outcomes when three coins tossed once is .....
  • $$2$$
  • $$8$$
  • $$6$$
  • $$4$$
The random variable X has the following probability massfunction $$P[x=x]=k.\dfrac{2x}{x!}, x=0,1,2,3=0 $$, otherwise, then the value of K is 
  • $$\dfrac{1}{5}$$
  • $$\dfrac{2}{5}$$
  • $$\dfrac{3}{5}$$
  • $$\dfrac{4}{5}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers