Processing math: 5%

CBSE Questions for Class 12 Commerce Applied Mathematics Quantification And Numerical Applications Quiz 6 - MCQExams.com

If p : q = r : s = t : u = 2 : 3 then what is (mp + nr + ot) : (mq + ns + ou) equal to?
  • 2 : 3
  • 5 : 6
  • 7 : 9
  • 2 : 5
If x is an integer greater than-10, but less than 10 and |x2|<3, then the values of x are 
  • 10,9,8,7,6,5,4,3,2,1,0,1,2,3,4,
  • 0,1,2,3,4,5,6,7,8,9,10,
  • 0,1,2,3,4,
  • 1,0,1
If x : a = y : b = z : c then
axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx) is equal to
  • 1
  • 2
  • 3
  • 0
A leak in the bottom of the tank can empty it in 6 hr. A pipe fills the tank at 4 ltr/min. When the tank is full the inlet is opened but due to the leak, the tank is emptied in 8 hour. What is the capacity of the tank ?
  • 5,260 L
  • 5,760 L
  • 5,846 L
  • 6,970 L
The solution set of inequality $$\displaystyle 2 sin^2 x - 5 sin x + 2> 0 if x \varepsilon [0, 2 \pi] is
  • \displaystyle [0, \frac {\pi}{6}]
  • \left[\dfrac {5 \pi}{6}, 2 \pi\right]
  • \displaystyle \left[0, \frac {\pi}{6} \right] \cup \left[\frac {5 \pi}{6}, 2 \pi\right]
  • None of these
A boat takes 2 hours to go 8 \;km and come back in still water lake. With velocity of 4\;km/hr, the time taken for going upstream of 8\;km and coming back is 
  • 140 minutes
  • 150 minutes
  • 160 minutes
  • 170 minutes
A boy is now a years old, and his father is 5a years old. What will the father be when the boy is 3a years old? How old was the father when the boy was born?
  • 7a, 4a years
  • 4a, 10a years
  • 12a , 3a years
  • 15a, 3a years
The complete solution set of the inequation \displaystyle x-\frac{2(k-1)}{5}\leq \frac{2}{3k}(x+1) given by 
  • \displaystyle (-\infty ,2) if \displaystyle k>\frac{2}{3}
  • \displaystyle [-\infty ,2) if \displaystyle k>\frac{2}{3}
  • \displaystyle (-\infty ,2] if k < 0
  • All of these
If a, b, c, d are positive real numbers, such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the 
  • \displaystyle 0\leq M\leq 1
  • \displaystyle 1\leq M\leq 2
  • \displaystyle 2\leq M\leq 3
  • \displaystyle 3\leq M\leq 4
If p,q and r are positive real number, then the quantity \dfrac{( p + r )}{ ( q + r)} is 
  • > \dfrac{p}{q} if p > q
  • = \dfrac{p}{q} if p > q
  • > \dfrac{p}{q} if p < q
  • < \dfrac{p}{q} if p >q
If \displaystyle l^{2}+m^{2}+n^{2}=5, then ( lm + mn + ln) is 
  • \displaystyle \geq (-5/2)
  • \displaystyle \geq (-1)
  • \displaystyle \geq 5
  • Option A & C both
In \triangle ABC, if D is a point in BC and divides it in the ratio 3:5 i.e., if BD:DC=3:5 then, ar(\triangle ADC) : ar(\triangle ABC) =?
  • 3:5
  • 3:8
  • 5:8
  • 8:3
Solve for \displaystyle x: \left | x + 4 \right |< 12
  • \displaystyle \left [ -16,7 \right ]
  • \displaystyle \left ( -16,4 \right ]
  • \displaystyle \left [ -16,3 \right )
  • \displaystyle \left ( -16,8 \right )
The speed of motor boat in still water 20\ km/hr and river flow is 5\ km/hr. A float is dropped from the boat when it start moving upstream. After moving 1.5\ km the boat returns back. The boat will catch the float (from initial instant) after 
  • 6\ min
  • 12\ min
  • 10\ min
  • 15\ min
Let a, b, c, x, y, z be positive real numbers such that a+b+c = x+y+z and abc = xyz. Further, suppose that a \leq x < y < z \leq c and a < b < c. then a = x, b = y, and c = z
  • True
  • False
A motor ship covers the distance of 300 km between two localities on a river in 10 hrs downstream and in 12 hrs upstream. Find the flow velocity of the river assuming that these velocities are constant. 
  • 2.0 km/hr
  • 2.5 km/hr
  • 3 km/hr
  • 3.5 km/hr
Solve for x: \displaystyle \left | 3x+2 \right |\geq 7
  • \displaystyle \left ( -\infty  ,-3  \right ]\cup \left [ \frac{5}{3},\infty  \right )
  • \displaystyle \left ( -\infty  ,-\dfrac53  \right ]\cup \left [3,\infty  \right )
  • \displaystyle \left ( -3,0  \right ]\cup \left [ \frac{5}{3},\infty  \right )
  • \displaystyle \left ( -5 ,-3  \right ]\cup \left [ \frac{5}{3},\infty  \right )
solve for \displaystyle x:\left | x-3 \right |> 4
  • x < - 1
  • x > 7
  • x < 2
  • (1) or (2)
If \displaystyle \left | x + 7 \right |> -8  then find the solution set
  • Q
  • N
  • W
  • R
\displaystyle 12\frac{3}{10}=_________
  • 12.10
  • 10.3
  • 12.3
  • 123.10
What are the real values of x that satisfy the inequations 6x + 9 < 3x +5 and  4x + 7 > 2x - 5?
  • \displaystyle \left ( -6,\frac{-4}{3} \right )
  • \displaystyle \left (\frac{-2}{3},5 \right )
  • \displaystyle \left (\frac{7}{3},10 \right )
  • \displaystyle \left (-5,\frac{2}{3}\right )
Which of the following number line represents the solution of the inequality
-6x + 12 > -7x + 17 ?
Solve the inequality. Write the solution set in interval notation.
\left|5-4x\right| > 8
  • \left( \displaystyle\frac { 3 }{ 4 } , -\displaystyle\frac { 13 }{ 4 } \right)
  • \left( -\infty ,-\displaystyle\frac { 3 }{ 4 } \right) \cup \left( \displaystyle\frac { 13 }{ 4 } ,\infty \right)
  • \left( -\infty ,\displaystyle\frac { 1 }{ 4 } \right) \cup \left( -\displaystyle\frac { 15 }{ 4 } ,\infty \right)
  • \left( -\displaystyle\frac { 13 }{ 4 } ,-\displaystyle\frac { 3 }{ 4 } \right)
Solve the rational inequality. Write the solution set in interval notation.
\displaystyle\frac{1}{x+10} > 0
  • \left( -\infty ,10 \right)
  • \left( 10,-\infty \right)
  • \left( -10,\infty \right)
  • \left[ 10,\infty \right]
Solve the polynomial inequality. Express the solution set in interval notation.
13x^2-5x\le 0
  • (-\infty,0)\cup\left(\dfrac{5}{13},\infty\right)
  • \left(0, -\dfrac{5}{13}\right)
  • (-\infty,0)\cup\left[-\dfrac{5}{13},\infty\right]
  • \left[0, \dfrac{5}{13}\right]
\displaystyle\frac { 5 }{ x } >3
  • (-\infty,\dfrac 53)
  • (-\infty,\dfrac 43)
  • (-\infty,\dfrac 57)
  • None of these
\displaystyle\frac { 5x-8 }{ x-5 } \ge 2
  • [-\dfrac 23,5] \cup [5,\infty]
  • (-\infty,-\dfrac 23]\cup(5,\infty)
  • [-\dfrac 23,5)
  • None of these
Solve the following inequality. \displaystyle \frac{x-1}{x+2}<0
  • -2< x < 1
  • -2< x < 7
  • -4< x < 1
  • None of these
The point which does not belong to the feasible region of the LPP:
Minimize: Z=60x+10y
subject to 3x+y \ge 18
2x+2y \ge 12
x+2y\ge 10
x,y \ge 0 is
  • (0,8)
  • (4,2)
  • (6,2)
  • (10,0)
Solve the following inequality. \displaystyle \frac{a-1}{a}>0
  • a < 0 or a > 1
  • a < 0 or a > 5
  • a < 0 or a > 2
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers