Explanation
He will hit the target, P(A)=15. He will not hit the target,P¯(A)=45. Probability that he will not hit the target in 10 shoots is (45)10 So, at least once, target will be hit.Required probability =1−(45)10
Let the coin be tossed n times.
Let getting head is consider to be success.∴p=12,q=1−p=1−12=12It is given that, p(X=3)=p(x=5)
⇒nC3(12)3(12)n−3=nC5(12)5(12)n−5⇒nC3=nC5
⇒n=3+5 [∵nCx=nCy⇒x+y=n]⇒n=8
Now, P(x=1)= 8C1(12)1(12)8−1
=8C1×(12)8=132
We have, p=12,q=12,n=8Probability (at least 6 heads) =8C6×(12)6×(12)2+8C7×(12)7(12)+8C8(12)8=(8×71×2+8+1)(12)8=37×1256=37256
Given, 9P(X=4)=P(X=2)
∴9 6C4 p4(1−p)2= 6C2 p2(1−p)4
⇒(1−p)2p2=9 ............ ∵ 6C2=6C4
⇒1−pp=3
⇒p=14
Please disable the adBlock and continue. Thank you.