Explanation
$${\textbf{Step - 1: Find the length of PQ and PR}}$$
$${\text{In right angled triangle OPQ ,we have}}$$
$${\text{PQ = }}\sqrt {{{(OP)}^2} - {{(OQ)}^2}} $$
$$ = \sqrt {169 - 25} = \sqrt {144} = 12\ cm$$
$$ \Rightarrow PR = 12\ cm\ \ \ {\text{(Two tangents from the same external point to a circle are equal)}}$$
$${\textbf{Step - 2: Find Area of quadrilateral}}$$
$${\text{ = (2}} \times \dfrac{1}{2} \times 12 \times 5)\ c{m^2} = 60\ c{m^2}$$ $$\textbf{[area of PQOR = 2} \times {\textbf{Area of }}\Delta {\textbf{POQ}]}$$
$${\textbf{Hence , area of the required quadrilateral is (A) 60 c}}{{\textbf{m}}^2}$$
$$\textbf{Step -1: Find the area of required triangle and parallelogram.}$$
$$\text{As, the }\triangle ABD\text{ and parallelogram }ABCD\text{ are on same base and between same parallels.}$$
$$\therefore \text{Height of the triangle and parallelogram is same.}$$
$$\text{Area of }\triangle ABD=\dfrac{1}{2}\times\text{Base}\times\text{Height}$$
$$=\dfrac{1}{2}\times AB\times DE$$
$$\text{Area of parallelogram}=\text{Base}\times\text{Height}$$
$$=AB\times DE$$
$$\textbf{Step -2: Find the required ratio.}$$
$$\dfrac{\text{Area of }\triangle ABD}{\text{Area of parallelogram }ABCD}=\dfrac{\dfrac{1}{2}\times AB\times DE}{AB\times DE}$$
$$=\dfrac{1}{2}$$
$$\textbf{Hence, option B is correct.}$$
Please disable the adBlock and continue. Thank you.