CBSE Questions for Class 9 Maths Circles Quiz 4 - MCQExams.com

If A, B, C, D are four points such that $$ \angle BAC={ 30 }^{ \circ } $$ & $$\angle BDC={ 60 }^{ \circ },$$ then D is the center of the circle through A, B and C. The statement is
  • sometimes true
  • false
  • true
  • none of the above.
In the given figure, $$ABCD$$ is a cyclic quadrilateral in which $$\angle BAD = 120^o$$. Then $$m\angle BCD$$ is:
243066_0725f33120cc46fdb770293bb875f21c.png
  • $$240^o$$
  • $$60^o$$
  • $$120^o$$
  • $$180^o$$
The angles of a cyclic quadrilateral $$ABCD$$ are $$A = (6x + 10) $$, $$B = (5x)$$, $$C = (x + y)$$, $$D = (3y -10)$$.
Find $$x$$ and $$y$$, and hence find the values of the four angles.
  • $$x = 10, y = 30, A =120^o, B=100^o, C= 506O, D=806o$$
  • $$x = 20, y = 30, A =130^o, B=100^o, C= 50^o, D=80^o$$
  • $$x = 18, y = 30, A =140^o, B=100^o, C= 50^o, D=84^o$$
  • $$x = 30, y = 30, A =180^o, B=100^o, C= 50^o, D=80^o$$
In given figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of $$ \angle ACD+\angle BED. $$

78031_ad62dd911a644359ba6b9d8fabf366fc.jpg
  • $$ { 540 }^{ o } $$
  • $$ { 270 }^{ o } $$
  • $$ { 180 }^{ o } $$
  • $$ { 120 }^{ o } $$
If the sum of the circumferences of two circles with radii $$R_1$$ and $$ R_2$$ is equal to the circumference of a circle of radius $$R$$, then
  • $$R_{1}+R_{2}=R$$
  • $$R_{1}+R_{2}>R$$
  • $$R_{1}+R_{2} < R$$
  • Nothing definite can be said about the relation among $$R_1, R_2$$ and R.
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
Area of the largest triangle that can be inscribed in a semi-circle of radius $$r$$ units is
  • $$r^2$$ sq. units
  • $$\dfrac{1}{2} r^2$$ sq. units
  • $$2r^2$$ sq. units
  • $$\sqrt{2} r^2$$ sq. units
A quadrilateral $$ABCD$$ is inscribed in a circle such that $$AB$$ is a diameter and $$ \angle ADC={ 130 }^{ o }$$, then $$m\angle BAC= $$?
  • $$ { 90 }^{ o } $$
  • $$ { 50 }^{ o } $$
  • $$ { 40 }^{ o } $$
  • $$ { 30 }^{ o } $$
In the given figure, if $$\angle AOC=110^o$$, then the values of $$\angle D$$ and $$\angle B$$, respectively are:
200195.PNG
  • $$55^o, 125^o$$
  • $$55^o,110^o$$
  • $$110^o,25^o$$
  • $$125^o,55^o$$
In the below diagram, $$O$$ is the centre of the circle, $$AC$$ is the diameter and if $$\angle APB=120^0$$, then $$\angle BQC$$ is
92769.jpg
  • $$30^0$$
  • $$150^0$$
  • $$90^0$$
  • $$120^0$$
In the figure $$AD||BC;\ \angle CAB = 45^{\circ} ;\ \angle DBC = 55^{\circ}$$, then $$\angle DCB$$ equals:

84434_d88a284eb88e40d39f8dbb0f3c04251e.png
  • $$55^{\circ}$$
  • $$80^{\circ}$$
  • $$100^{\circ}$$
  • $$120^{\circ}$$
Which of the following statement (s) is/ are true?
  • Two chords of a circle equidistant from the centre are equal
  • Equal chords in a circle subtend equal angles at the centre
  • Angle in a semicircle is a right angle
  • All of the above
In the figure $$ \angle ADC={ 130 }^{ o } $$ and chord BC = chord BE. Find $$ \angle CBO $$.

78028.png
  • $$40^o$$
  • $$50^o$$
  • $$60^o$$
  • $$100^o$$
In the figure, $$\angle B$$ is equal to:

98727_67c58fb3a00445dea69e4ff42b97104a.png
  • $$80^{\circ}$$
  • $$95^{\circ}$$
  • $$70^{\circ}$$
  • $$115^{\circ}$$
If $$O$$ is the centre of a circle, $$AB$$ its chord, $$C$$ is the mid point of $$AB$$ , then $$OAC$$ is
  • an acute angled
  • an obtuse angled
  • a right angled triangle
  • an isosceles triangle
The angle made by the line from the centre with the chord which it bisects is:
  • $$ 90^0 $$
  • $$ 30 ^0$$
  • $$ 45^0 $$
  • None of these
The greatest angle of a cyclic quadrilateral $$ABCD$$ in which $$\angle A = (2x-1)^o, \angle B = (y+5)^o, \angle C = (2y+15)^o$$ and $$\angle D = (4x-7)^o$$ is:
  • $$115^o$$
  • $$120^o$$
  • $$125^o$$
  • $$130^o$$

Statement 1: In given figure, if C is centre of the circle and $$\angle PQC = 25^{\circ}$$ and $$\angle PRC = 15^{\circ}$$, then $$\angle QCR $$ is $$40^{\circ}.$$

Statement 2: Angle subtended by arc at the centre is twice angled subtended by it at circumference of the circle.

108065_c892369f60444924a6dd93e491149376.png
  • Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1
  • Statement - 1 is True, Statement - 2 is True : Statement 2 is NOT a correct explanation for Statement - 1
  • Statement - 1 is True, Statement - 2 is False
  • Statement - 1 is False, Statement - 2 is True
Find the smallest angle of a cyclic quadrilateral $$ABCD$$ in which $$\angle A= (2x-10)^o, \, \, \angle B=(2y-20)^o, \, \, \angle C= (2y+30)^o$$ and $$\angle D=(3x+10)^o.$$
  • $$80^0$$
  • $$50^0$$
  • $$85^0$$
  • $$40^0$$
In the given circle with centre $$'O'$$, the mid points of two equal chords $$AB$$ & $$CD$$ are $$K$$ & $$L$$, respectively. If $$\angle$$ $$OLK =$$ $$25^{\circ}$$, Then $$\angle$$ $$LKB$$ is equal to:
198680.PNG
  • $$125^{\circ}$$
  • $$115^{\circ}$$
  • $$105^{\circ}$$
  • $$90^{\circ}$$
$$ABCD$$ is a cyclic quadrilateral. If $$\angle  A-\angle C=30^{\circ}$$, then $$ \angle  C =$$?
  • $$90^{\circ}$$
  • $$115^{\circ}$$
  • $$60^{\circ}$$
  • $$75^{\circ}$$
In a circle of radius 17cm two parallel chords of the length 30cm and 16cm respectively are drawn on the opposite sides of the centre. Then  the distance between them  is
  • 7cm
  • 12cm
  • 23cm
  • 32cm
In a circle of radius $$13$$cm, $$PQ$$ and $$RS$$ are two parallel chords of length $$24$$cm and l0cm respectively. The chords are on the same side of the centre then the distance between the chords  is?
  • $$7$$cm
  • $$12$$cm
  • $$5$$cm
  • $$10$$cm
In the given figure, $$POQ$$ is the diameter of the circle with center $$O$$. Quadrilateral $$ PQRS$$ is a cyclic quadrilateral and $$SQ$$ is joined. If $$\angle R = 138^\circ$$, then $$m\angle PQS$$ is:
243068_93b47ecce9b64c02bbec18c4e24174bc.png
  • $$90^\circ$$
  • $$42^\circ$$
  • $$48^\circ$$
  • $$38^\circ$$
Find the four angles of a cyclic quadrilateral ABCD in which $$\angle A=(2x-1)^o, \angle B=(y+5)^o, \angle C=(2y+15)^o$$ and $$\angle D(4x-7)^o$$
  • $$\angle A=25^o, \angle B=45^o, \angle C=105^o, \angle D=135^o$$
  • $$\angle A=35^o, \angle B=75^o, \angle C=95^o, \angle D=135^o$$
  • $$\angle A=45^o, \angle B=75^o, \angle C=95^o, \angle D=125^o$$
  • $$\angle A=65^o, \angle B=55^o, \angle C=115^o, \angle D=125^o$$
$$ ABCD$$ is a cyclic quadrilateral, then the angles of the quadrilateral in the same order are:
  • $$ 70^{\circ} , 120^{\circ} , 110^{\circ}, 60^{\circ} $$
  • $$ 120^{\circ} , 110^{\circ} , 70^{\circ}, 60^{\circ} $$
  • $$110^{\circ} , 700^{\circ} , 60^{\circ}, 120^{\circ} $$
  • $$ 60^{\circ} , 120^{\circ} , 70^{\circ}, 110^{\circ} $$
In the figure, $$\angle BAD = 70^{\circ}$$, $$\angle ABD = 56^{\circ}$$ and $$\angle ADC = 72^{\circ}$$.
 Calculate (i) $$\angle BDC$$ (ii) $$\angle BCD$$ (iii) $$\angle CBD$$.

243373.jpg
  • (i) $$\angle BDC = 18^{\circ}$$

    (ii) $$\angle BCD = 110^{\circ}$$

    (iii) $$\angle CBD = 52^{\circ}$$
  • (i) $$\angle BDC = 18^{\circ}$$

    (ii) $$\angle BCD = 110^{\circ}$$ 

    (iii) $$\angle CBD = 54^{\circ}$$
  • (i) $$\angle BDC = 18^{\circ}$$

    (ii) $$\angle BCD = 120^{\circ}$$ 

    (iii) $$\angle CBD = 52^{\circ}$$
  • (i) $$\angle BDC = 10^{\circ}$$

    (ii) $$\angle BCD = 110^{\circ}$$ 

    (iii) $$\angle CBD = 52^{\circ}$$
In the given figure, $$\triangle XYZ$$ is inscribed in a circle with centre $$O$$. If the length of chord $$YZ$$ is equal to the radius of the circle $$OY$$, then $$\angle YXZ$$ is equal to 
243002_7291f0d28224411ca612abc2dd62f5c2.png
  • $$60^o$$
  • $$30^o$$
  • $$80^o$$
  • $$100^o$$
In the given figure, $$ABCD$$ is a cyclic quadrilateral in which $$\angle CAD = 25^{o}, \angle ABC = 50^{o}$$ and $$\angle ACB = 35^{o}$$.
Then: (i) $$\angle CBD$$ (ii) $$\angle DAB$$ (iii) $$\angle ADB$$ are respectively?

243790_30d24b95fda34892907143784c4b6c4c.png
  • (i) $$\angle CBD = 35^{o}$$

    (ii) $$\angle DAB = 80^{o}$$

    (iii) $$\angle ADB = 85^{o}$$
  • (i) $$\angle CBD = 25^{o}$$

    (ii) $$\angle DAB = 35^{o}$$

    (iii) $$\angle ADB = 85^{o}$$
  • (i) $$\angle CBD = 25^{o}$$

    (ii) $$\angle DAB = 70^{o}$$

    (iii) $$\angle ADB = 35^{o}$$
  • (i) $$\angle CBD = 85^{o}$$

    (ii) $$\angle DAB = 70^{o}$$

    (iii) $$\angle ADB = 95^{o}$$
Two circle intersect at $$A$$ and $$B$$. Quadrilaterals $$PCBA$$ and $$ABDE$$ are inscribed in these circles such that $$PAE$$ and $$CBD$$ are line segments. Also, $$\angle$$P = 95$$^o$$ and $$\angle$$C = 40$$^o$$. The value of $$Z$$ is:
243079_7ad7d4bf44e34ddbaf7fda019f04a94f.png
  • $$65^o$$
  • $$105^o$$
  • $$95^o$$
  • $$85^o$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers