Processing math: 1%

CBSE Questions for Class 9 Maths Circles Quiz 5 - MCQExams.com

In the given figure, PQRS is a cyclic trapezium in which PQSR. If P = 82o, then S is:
243073_109aa56e1a274d1696941eb2204bf695.png
  • 98o
  • 108o
  • Data not sufficient
  • None of these
In the figure, AB is parallel to DC, \angle BCD=80^o and \angle BAC = 25^oThen \angle CAD is:
244715.PNG
  • 55^o
  • 65^o
  • 75^o
  • 35^o
In the given figure, I is the incentre of \Delta ABC. AI produced meets the circumcircle of \Delta ABC at D\angle ABC = 55^{o} and \angle ACB = 65^{o}.  Then  (i) \angle BCD (ii) \angle CBD (iii) \angle DCI (iv) \angle BIC are respectively:
243839_58687d10638c47d4b2f5b7c1f5730ac1.png
  • { 50 }^{ o },\quad { 20 }^{ o },\quad { 32.5 }^{ o }\quad \& \quad { 240 }^{ o }
  • { 30 }^{ o },\quad { 30 }^{ o },\quad { 62.5 }^{ o }\quad \& \quad { 120 }^{ o }
  • { 35 }^{ o },\quad { 35 }^{ o },\quad { 82.5 }^{ o }\quad \& \quad { 100 }^{ o }
  • { 40 }^{ o },\quad { 20 }^{ o },\quad { 32.5 }^{ o }\quad \& \quad { 150 }^{ o }
In the given figure, AB is a diameter of a circle with the centre O and chord ED is parallel to AB and \angle EAB = 65^{o}.  (i) \angle EBA (ii) \angle BED (iii) \angle BCD are respectively:
243793_cf75e582d8264c34a305d94d227d0d52.png
  • (i) 155^{o}

    (ii) 25^{o}

    (iii) 25^{o}
  • (i) 65^{o}

    (ii) 25^{o}

    (iii) 155^{o}
  • (i) 155^{o}

    (ii) 65^{o}

    (iii) 25^{o}
  • (i) 25^{o}

    (ii) 25^{o}

    (iii) 155^{o}
In the adjoining figure, two circles intersect at A and B. The centre of the smaller circle is O and lies on the circumference of the larger circle. If PAC and PBD are straight lines and \angle APB = 75^{o}, find (i) \angle AOB, (ii) \angle ACB, (ii) \angle ADB
243831_73f57178901a495e9fde0efe5919064b.png
  • (i) \angle AOB = 150^{o},
    (ii) \angle ACB = 30^{o},
    (ii) \angle ADB = 30^{o}.
  • (i) \angle AOB = 150^{o},
    (ii) \angle ACB = 30^{o},
    (ii) \angle ADB = 60^{o}.
  • (i) \angle AOB = 150^{o},
    (ii) \angle ACB = 40^{o},
    (ii) \angle ADB = 30^{o}.
  • (i) \angle AOB = 120^{o},
    (ii) \angle ACB = 30^{o},
    (ii) \angle ADB = 30^{o}.
In the given figure, the two circles intersect at P and Q. If \angle A = 80^{o} and \angle D = 84^{o}, So (i) \angle QBC, (ii) \angle BCP are:
243825_538093d99c7f4ecbb0d87e50da340c78.png
  • (i) \angle QBC = 96^{\circ},

    (ii) \angle BCP = 100^{\circ}
  • (i) \angle QBC = 80^{\circ},

    (ii) \angle BCP = 96^{\circ}
  • (i) \angle QBC = 100^{\circ},

    (ii) \angle BCP = 80^{\circ}
  • (i) \angle QBC = 100^{\circ},

    (ii) \angle BCP = 96^{\circ}
A, B, and C are three points on a circle with centre O such that BOC = 30^o and \angle AOB = 60^o. If D is a point on the circle other than the arc ABC, find \angle ADC
244105.png
  • 45^o
  • 60^o
  • 22.5^o
  • 30^o
ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If \angle DBC = 70^o, \angle BAC = 30^o, find \angle BCD. Further, if AB= BC, find \angle ECD.
  • { 70 }^{ o }\quad \& \quad { 60 }^{ o }.\\
  • { 30 }^{ o }\quad \& \quad { 100 }^{ o }.\\
  • { 80 }^{ o }\quad \& \quad { 50 }^{ o }.\\
  • { 100 }^{ o }\quad \& \quad { 30 }^{ o }.\\
Two circles intersect in A and B. Quadrilaterals PCBA and ABDE are inscribed in these circles such that PAE and CBD are line segments. If \angle P=95^o and \angle C=40^o. Also, \angle AED=z. Then the value of z is:
244576_96618f81570844ceaaeca5b0b0dde134.png
  • 65^o
  • 105^o
  • 95^o
  • 85^o
In the given figure, O is the centre of the circle. If \angle AOD = 140^{o} and \angle CAB = 50^{o},  then:
(i) \angle EDB (ii) \angle EBD are respectively:

243798_a1195ce8fb4442de88a7a817b4dd57f8.png
  • { 70 }^{ o }\quad \& \quad { 50 }^{ o }
  • { 50 }^{ o }\quad \& \quad { 110 }^{ o }
  • { 30 }^{ o }\quad \& \quad { 70 }^{ o }
  • { 120 }^{ o }\quad \& \quad { 130 }^{ o }
In the given figure, AB is a diameter of a circle with centre O. If ADE and CBE are straight lines, meeting a E such that \angle BAD = 35^{o} and \angle BED = 25^{o},  Then : (i) \angle DCB (ii) \angle DBC (iii) \angle BDC, are respectively.
243817_50d3114e63d6407083dc39dad758646a.png
  • 55^{ o },\quad 100^{ o }\quad \& \quad 35^{ o }
  • 25^{ o },\quad 120^{ o }\quad \& \quad 35^{ o }
  • 35^{ o },\quad 115^{ o }\quad \& \quad 30^{ o }
  • 65^{ o },\quad 135^{ o }\quad \& \quad 255^{ o }
In the given figure \text{O} is the center of the circle and measure of \angle \text{AOC} is  \displaystyle 100^{\circ}   what is the value of  \displaystyle \angle \text{ADC}  ?
376646_c6125027127f411b9d150b3ce31d298b.png
  • \displaystyle 30^{\circ}
  • \displaystyle 40^{\circ}
  • \displaystyle 50^{\circ}
  • \displaystyle 60^{\circ}
AOD is a diameter of the circle with centre O. Given that \angle BDA=18^{\circ} and \angle BDC=38^{\circ}. Find \angle BCD.

285694_e4d98a0d51f545b8b7fa40af5b8f1719.png
  • 100^{\circ}
  • 108^{\circ}
  • 126^{\circ}
  • 152^{\circ}
In the given figure AB is diameter of circle with centre O and chord ED is parallel to AB and \angle EAB=65^oThen m\angle EBD is:
244731.PNG
  • 55^o
  • 65^o
  • 25^o
  • 40^o
Which of the following statement is false?
  • If we join any two points on a circle we get a diameter of the circle
  • A diameter of a circle contains the centre of the circle
  • A semicircle is an arc
  • The length of a circle is called its circumference
PQRS is a cyclic quadrilateral. Find the measure of \angle P and \angle Q.
271375_dc26be58b8f54d399d554957d6487ae6.png
  • 135^{\circ},60^{\circ}
  • 60^{\circ},120^{\circ}
  • 60^{\circ},90^{\circ}
  • 100^{\circ},120^{\circ}
The perpendicular drawn from centre to the chord divides the chord in a ratio of _____
  • 1:1
  • 1:2
  • 2:1
  • none of these
\text{ABCD} is a cyclic quadrilateral whose side \text{AB} is a diameter of the circle through \text{A, B, C} and \text{D}. If \angle \text{ADC}=130^{\circ}, find \angle \text{BAC}.
271119_0ea17b43e9ed46f0a32cd2e4896af3e9.png
  • 40^{\circ}
  • 50^{\circ}
  • 60^{\circ}
  • 30^{\circ}
In the given diagram, AB is the diameter of the given circle with centre O. C and D are points on the circumference of the circle. If \angle ABD=35^{\circ} and \angle CDB=15^{\circ}, then \angle CBD equals:

285094_9364387af8af4b9bb7a1f741c28fad59.png
  • 55^{\circ}
  • 75^{\circ}
  • 40^{\circ}
  • 25^{\circ}
If two chords of a circle are equidistant from the center of the circle then they are 
  • Equal to each other
  • Not equal to each other
  • Intersect each other
  • None of these
In the figure, AB is parallel to DC, \angle BCD=80^o and \angle BAC = 25^oThen m\angle ADC is:
244715.PNG
  • 100^o
  • 80^o
  • 65^o
  • 55^o
Then m\angle EBA is:
244732_28efb6b50a5f4eb39b39a6b0aed03d90.png
  • 25^o
  • 20^o
  • 35^o
  • 70^o
ABC is an isosceles triangle in the given circle with centre O, if  \angle ABC=42^{\circ}, then find the measure of \angle CDE.
271382_b915b4a6503b4cdc9d639c66fdd726b0.png
  • 84^{\circ}
  • 138^{\circ}
  • 96^{\circ}
  • 148^{\circ}
Find the value of (a + b)
291798_8dd8c1ab434c41c184e879cc7ef18be7.png
  • \displaystyle 40^{\circ}
  • \displaystyle 80^{\circ}
  • \displaystyle 120^{\circ}
  • \displaystyle 160^{\circ}
In the given figure, AB = BC = CD. If \displaystyle \angle BAC=25^{\circ}, then value of \displaystyle \angle AED is:
291790_dd494eb1bc3147118fb97d52e7f09b27.png
  • \displaystyle 50^{\circ}
  • \displaystyle 60^{\circ}
  • \displaystyle 65^{\circ}
  • \displaystyle 75^{\circ}
In figure, AB is a chord of a circle with centre O and AP is the tangent at A such that \angle BAP=75^{\circ}. Then \angle ACB is equal to:
317888_a04dac90fd474b16af7e501fb33305fc.png
  • 135^{\circ}
  • 120^{\circ}
  • 105^{\circ}
  • 90^{\circ}
At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY at a distance 8 cm from A is:
  • 4 cm
  • 5 cm
  • 6 cm
  • 8 cm
In the given figure, the value of a is:
291837_1a5e4793f2f144dea551ec1d73774056.png
  • \displaystyle 30^{\circ}
  • \displaystyle 40^{\circ}
  • \displaystyle 60^{\circ}
  • \displaystyle 90^{\circ}
In the figure, \angle BDC=
327957_6ed92ee7227549c8bf4599894cdee248.png
  • 95^{\circ}
  • 105^{\circ}
  • 100^{\circ}
  • 110^{\circ}
ABCD is a cyclic quadrilateral AE is drawn parallel to CD and BA is produced. If \displaystyle \angle ABC=92^{\circ} and \displaystyle \angle FAE=20^{\circ}, then \displaystyle \angle BCD= 
316534.png
  • \displaystyle 88^{\circ}
  • \displaystyle 108^{\circ}
  • \displaystyle 115^{\circ}
  • \displaystyle 72^{\circ}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers