CBSE Questions for Class 9 Maths Constructions Quiz 2 - MCQExams.com

Angles to be bisected to obtain an angle of $$90^{\circ}$$ are:
  • $$60^{\circ}$$
  • $$60^{\circ}$$ and $$120^{\circ}$$
  • $$120^{\circ}$$ and $$180^{\circ}$$
  • $$0^{\circ}$$ and $$60^{\circ}$$
Rearrange the following steps of constructing a triangle when the base angle say $$\angle B \,\, and \,\, \angle C$$ and its perimeter $$BC + CA + AB$$ is given:

$$1.$$ Draw perpendicular bisectors $$PQ$$ of $$AX$$ and $$RS$$ of $$AY$$.
$$2.$$ Draw a line segment, say $$XY$$ equal to $$BC + CA +AB$$.
$$$$ Let $$PQ$$ intersect $$XY$$ at $$B$$ and $$RS$$ intersect $$XY$$ at $$C$$. Join $$A-B$$ and $$A-C$$.
$$4.$$ Make $$\angle LXY$$ equal to $$\angle B$$ and $$\angle MYX$$ equal to $$\angle C$$.
$$5.$$ Bisect $$\angle LXY$$ and $$\angle MYX$$. Let these bisectors intersect at a point $$A$$.
  • $$1\rightarrow 3\rightarrow 5\rightarrow 4\rightarrow 2$$
  • $$2\rightarrow 4\rightarrow 5\rightarrow 1\rightarrow 3$$
  • $$5\rightarrow 4\rightarrow 3\rightarrow 2\rightarrow 1$$
  • $$2\rightarrow 3\rightarrow 5\rightarrow 4\rightarrow 1$$
An angle which can be constructed using a pair of compass and ruler is
  • $$20^{\circ}$$
  • $$80^{\circ}$$
  • $$60^{\circ}$$
  • $$110^{\circ}$$
To draw an angle of $$150^{\circ}$$ using a pair of compass and ruler
  • bisect $$120^{\circ}$$ and $$180^{\circ}$$
  • bisect $$60^{\circ}$$ and $$120^{\circ}$$
  • bisect $$0^{\circ}$$ and $$60^{\circ}$$
  • None
A $$\triangle ABC$$ in which $$AB= 5.4\ \text{cm}, \angle CAB= 45^{\circ}$$ and $$AC + BC= 9\ \text{cm}$$. Then, perimeter of $$\Delta ABC$$ is
  • $$14.4\ \text{cm}$$
  • $$11.4\ \text{cm}$$
  • $$12.4\ \text{cm}$$
  • $$15.4\ \text{cm}$$
The value of $$\angle BAC$$ is
  • $$35^\circ$$
  • $$65^\circ$$
  • $$75^\circ$$
  • $$85^\circ$$
 Then, length (in $$cm$$) of each of the sides of the triangle is
  • $$3, 4, 4$$
  • $$2.7, 3.7, 3.4$$
  • $$2.3, 4.2, 3.6$$
  • $$4, 1.8, 4$$
Given an angle $$\theta$$, which of the following angles cannot be obtained by using the method of construction of angle bisectors?
  • $$\dfrac{\theta}2$$
  • $$\dfrac{\theta}4$$
  • $$\dfrac{\theta}6$$
  • $$\dfrac{\theta}8$$
How many angle bisectors need to be drawn in the steps of construction of an angle $$60^\circ$$?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
For constructing a triangle whose perimeter and both base angles are given, the first step is to:
  • Draw a base of any length
  • Draw the base of length $$=$$ perimeter
  • Draw the base angles from a random line.
  • Draw a base of length $$=\dfrac13 \times$$ perimeter.
You are asked to "construct" an angle of $$90^\circ$$. Which of the following methods is considered appropriate for construction
  • Using a compass and straightedge, copy an angle that appears to be close to $$90^\circ$$ from a diagram in your textbook.
  • Using a compass and straightedge, construct two parallel lines and label on of the angles $$90^\circ$$.
  • Using a compass and straightedge, construct angles of $$60^\circ$$ and $$120^\circ$$ and bisect the angle between them.
  • Using a protractor, draw an angle of $$90^\circ$$
How many angle bisectors need to be drawn in the steps of construction of an angle $$45^\circ$$?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
A triangle ABC can be constructed in which$$\angle B =60^{o}$$, $$\angle C= 45^{o}$$ and AB +BC + AC = 11 cm. Is this Statement true?
  • True
  • False
The diagram represents the construction of triangle ABC with which of the following dimensions?
599465_587bff45f89b40459cec790684b6afd6.png
  • $$ \displaystyle BC=4.8 $$ $$cm$$, $$ \displaystyle \angle B=60^{\circ} $$ and $$ \displaystyle AB-AC=12\ cm $$.
  • $$ \displaystyle BC=4.8 $$ $$cm$$, $$ \displaystyle \angle B=30^{\circ} $$ and $$ \displaystyle AB-AC=15\ cm $$.
  • $$ \displaystyle BC=4.8 $$ $$cm$$, $$ \displaystyle \angle B=30^{\circ} $$ and $$ \displaystyle AB-AC=12\ cm $$.
  • None of these
Construct a $$\triangle ABC$$ in which:
$$AB= 5.4\ cm$$, $$\angle CAB= 45^{0}$$ and $$AC\, +\, BC= 9\ cm$$. Then the length of $$AC$$ (in $$cm.$$) is:
  • $$4$$
  • $$7$$
  • $$5$$
  • None of these
In a $$\triangle ABC$$ in which $$AC= 5\ cm$$  and $$\angle BAC= 60^{\circ}$$ and $$BC - AB= 1.2\ cm$$. The, $$AB$$ is
  • $$3.18$$
  • $$4.32$$
  • $$5.12$$
  • None of these
The steps of construction of an $$\angle AOB=45^{o}$$ is given in jumbled order below:
1. Place compass on intersection point.
Place ruler on start point and where arc intersects perpendicular line.
Adjust compass width to reach start point. 
Construct a perpendicular line.
Draw $$45$$ degree line.
Draw an arc that intersects perpendicular line. 
Which step comes last ?
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
To construct a $$\triangle$$ABC in which BC = $$10$$ cm and B= $$60^o $$and AB + AC =14 cm, then the length of BD used for construction 
  • $$7$$ cm
  • $$14$$ cm
  • $$20$$ cm
  • $$10$$ cm
Write True or False in each of the following . Give reason for your answer: 
An angle of $$ 42.5^{\circ} $$ can be constructed .
  • True
  • False
The bisector of $$90^0$$ is $$40^0$$. True or false
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers