Explanation
$${\textbf{Step -1: A triangle having side lengths as }}\mathbf{a,}{\textbf{ }}\mathbf b{\textbf{ and }}\mathbf c.{\text{ }}$$
$${\text{Area of triangle }} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $$
$${\text{Where, s is the semi perimeter of the triangle;}}$$
$${\text{that is, }}s = \dfrac{{a + b + c}}{2}$$
$${\text{Thus, the Heron's formula is}}$$ $$\vartriangle = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $$ $${\text{Where, }}2s = a + b + c$$
$${\textbf{Hence, option D is correct. }}$$
Area of triangle with sides $$a$$, $$b$$ and $$c$$ and $$s$$ $$ = \dfrac { a+b+c }{ 2 } $$ is $$ \sqrt {s(s-a)(s-b)(s-c) } \ $$. For triangle with sides 24 m, 40 m and 32 m, $$ s = \dfrac { 24+40+32 }{ 2 }=48 m\ $$Area of the triangle with sides 24 m, 40 m and 32 m $$ =\sqrt {48(48-24)(48-40)(48-32) } =\sqrt { 48\times 24\times 8\times 16 } =\sqrt { 24\times 2\times 24\times 8\times 8\times 2 } = 24\times 8\times 2 = 384 {m}^{2}$$
Hence, option 'B' is correct.
For $$\Delta ABC$$, a $$=$$ 6 cm, b $$=$$ 5, c $$=$$ 7 cm
$$\therefore s = \dfrac{6+5+7}{2} = 9$$ cm
$$\therefore$$ Area of $$ \Delta ABC = \sqrt{s(s-a)(s-b)(s-c)}$$
$$= \sqrt{9\times (9-6)(9-5)(9-7)}$$
$$= \sqrt{9\times 3\times 4\times 2}$$
$$= 3\times 2\sqrt{6} = 6\sqrt{6}$$
Thus, area of quadrilateral $$= 2\times$$ Area of $$\Delta ABC$$$$= 12\sqrt{6}$$ sq cm
From congruency of triangles, it can be proved that $$AE=ED= \dfrac{1}{2}AD$$, and $$ AE \perp BC$$
$$ AE = \dfrac{1}{2}AD = \dfrac{l}{2}$$
Area of $$\Delta ABC = \dfrac{1}{2}\times BC\times AE$$
or $$6\sqrt{6} = \dfrac{1}{2}\times 6\times \dfrac{l}{2}$$
or $$l = 4\sqrt{6}$$
Please disable the adBlock and continue. Thank you.