Explanation
Let the sides of the triangle be $$ 13a, 14a, 15a $$. Perimeter of the triangle $$ = $$ Sum of all sides $$ = 13a + 14a + 15a = 42a$$Given, perimeter of the triangle $$ = 84 cm $$
$$ \therefore 42a = 84 cm $$
$$ a = 2 cm $$So, the sides of the triangle are $$ 13a = 26 cm, 14a = 28 cm, 15a = 30 cm $$.
Area of triangle with sides a, b, and c and $$s = \displaystyle \frac { a+b+c }{ 2 } $$ is $$ \sqrt { s(s-a)(s-b)(s-c) } $$.
For triangle with sides 26 cm, 28 cm and 30 cm, $$ s = \displaystyle \frac { 26+28+30 }{ 2 }= 42 cm $$Area of the triangle with 26 cm, 28 cm and 30 cm $$ =\sqrt { 42(42-26)(42-28)(42-30) }$$
$$ =\sqrt { 42\times 16\times 14\times 12 } $$
$$=\sqrt { 6\times 7\times 4\times 4\times 7\times 2 \times 6 \times 2} $$
$$= 6\times 7\times 4 \times 2 = 336 {cm}^{2}$$
Area of triangle with sides a, b and c is given by: $$ \sqrt { s(s-a)(s-b)(s-c) } $$. where $$s = \displaystyle \frac { a+b+c }{ 2 } $$
For triangle with sides 13 cm, 14 cm and 15 cm:
$$ s = \displaystyle \frac { 13+14+15 }{ 2 } \ \text{cm}=21\ \text{ cm} $$$$\therefore $$ Area of the triangle with sides 13 cm, 14 cm and 15 cm $$ =\sqrt { 21(21-13)(21-14)(21-15) }$$
$$ =\sqrt { 21\times 8\times 7\times 6 }$$
$$ =\sqrt { 7\times 3\times 2\times 4\times 7\times 2 \times 3 } $$
$$= 7\times 3\times 2 \times 2 = 84\ \text{cm}^{2}$$
Let the sides of the triangle be $$ 3a, 4a, 5a $$. Perimeter of the triangle $$ = 3a + 4a + 5a $$
$$= 12a$$Given, perimeter of the triangle $$ = 144 m $$
$$ \Rightarrow 12a = 144 m $$
$$ a = 12 m $$So, the sides of the triangle are
$$ 3a = 36 m,\\ 4a = 48 m, \\5a = 60 m $$.
Area of triangle with sides $$a,b$$ and $$c$$ is given as is $$ \sqrt { s(s-a)(s-b)(s-c) } $$.
Where
$$ s= \dfrac { a+b+c }{ 2 } $$
For triangle with sides $$36 m, 48 m \ and\ 60 m,$$
$$ s = \dfrac { 36+48+60 }{ 2 } \\= 72 m $$Thus
$$A =\sqrt { 72(72-36)(72-48)(72-60) } \\=\sqrt { 72\times 36\times 24\times 12 }$$
$$ =\sqrt { 36\times 2\times 36\times 12\times 2\times 12 } $$
$$= 36\times 12\times 2 \\= 864 {m}^{2}$$
Area of the triangle with $$13\ m$$, $$14\ m$$ and $$15\ m$$ $$ =\sqrt { 21(21-13)(21-14)(21-15) } $$
$$=\sqrt { 21\times 8\times 7\times 6 }$$
$$ =\sqrt { 3\times 7\times 2\times 4\times 7\times 3 \times 2}$$
$$ = 3\times 7\times 2 \times 2 = 88\ {m}^{2}$$
$$\therefore $$ cost of painting it at the rate of Rs $$ 8.75 $$ per $$ { m }^{ 2 } = 84 \times 8.75 = $$ Rs. 735
Please disable the adBlock and continue. Thank you.