Processing math: 1%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 9 Maths Heron'S Formula Quiz 4 - MCQExams.com
CBSE
Class 9 Maths
Heron'S Formula
Quiz 4
A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are
15
c
m
,
14
c
m
,
13
c
m
, and the parallelogram stands on the base of
15
cm. Find the height of the parallelogram.
Report Question
0%
5.9
c
m
0%
6.8
c
m
0%
6.5
c
m
0%
5.6
c
m
Explanation
Area of triangle =
√
s
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
S
=
a
+
b
+
c
2
=
15
+
14
+
13
2
=
21
c
m
∴
area of
\triangle =\sqrt { 21\left( 21-15 \right) \left( 21-14 \right) \left( 21-13 \right) } =\sqrt { 21\times 6\times 7\times 8 }
=
\sqrt { 3\times 7\times 3\times 2\times 7\times 4\times 2 } =2\times 2\times 3\times 7
=
{ 84cm }^{ 2 }
Now, area of
\parallel
gm = area of
\triangle
=
b\times h=84{ cm }^{ 2 }
\Rightarrow \quad 15\times h=84\Rightarrow h=\dfrac { 84 }{ 15 } =5.6cm
\therefore
Height of
\parallel
gm =
5.6cm
What is the area of a triangle whose sides are
13\ cm, 14\ cm
and
15\ cm
?
Report Question
0%
84\ sq.cm
0%
64\ sq.cm
0%
825\ sq.cm
0%
105\ sq.cm
Explanation
S=\dfrac { a+b+c }{ 2 } =\dfrac { 13+14+15 }{ 2 } =21cm
area of
\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } =\sqrt { 21\left( 21-13 \right) \left( 21-14 \right) \left( 21-15 \right) }
=\sqrt { 21\times 8\times 7\times 6 } =\sqrt { 3\times 7\times 2\times 2\times 2\times 7\times 2\times 3 } =2\times 2\times 3\times 7
={ 84cm }^{ 2 }
Find the number of trees that can be planted in a triangular ground having sides
51m, 37m
and
20m
, when each tree occupies
6m^2
of space:
Report Question
0%
54
0%
51
0%
82
0%
43
Explanation
Area of
\triangle =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 51+37+20 }{ 2 } =54m
\therefore \quad
Area of triangle ground
=\sqrt { 54\left( 54-51 \right) \left( 54-37 \right) \left( 54-20 \right) }
=\sqrt { 54\times 3\times 17\times 34 } =306{ m }^{ 2 }
Number of trees
=\dfrac { 306 }{ 6 } =51
The perimeter of a triangular field is
420
m and its sides are in the ratio
6: 7: 8
Find area of the triangular field.
Report Question
0%
2100
sq m
0%
2100\sqrt{15}
sq m
0%
2000
sq m
0%
2000\sqrt{15}
sq m
Explanation
\textbf{Step - 1: Finding the sides}
\text{Given that the sides are in the ratio }6:7:8
\implies a=6x,b=7x,c=8x
\text{Perimeter}=a+b+c
\implies 420=6x+7x+8x=21x
\implies x=20
\implies a=120,b=140,c=160
\textbf{Step - 2: Calculating area}
s=\dfrac{a+b+c}2=210
\implies \text{Area}=\sqrt{s(s-a)(s-b)(s-c)}
\implies \text{Area} = \sqrt{210\times90\times70\times50}
\implies \text{Area}=2100\sqrt{15}
\textbf{Thus, the area of the given field is }\mathbf{2100\sqrt{15}}\textbf{ sq. m.}
In
\triangle ABC, AB = 6\ cm, BC = 7\ cm
and
AC = 5\ cm
. Find the area of
\triangle ABC
Report Question
0%
6\sqrt {6}\ cm^{2}
0%
6\sqrt {3}\ cm^{2}
0%
6\sqrt {2}\ cm^{2}
0%
9\sqrt {6}\,cm^{2}
Explanation
Using Heron's formula,
Area of a triangle
=\sqrt{s(s-a)(s-b)(s-c)}
where
s=
semiperimeterof the triangle
a=
length of side
BC
b=
length of side
AC
c=
length of side
AB
In
\triangle ABC,\ a=7,\ b=5,\ c=6
Semiperemeter of
\triangle ABC=s=\dfrac{a+b+c}{2}
=\dfrac{7+5+6}{2}
=9
Hence, the area of
\triangle ABC=\sqrt{9\times (9-7)\times (9-5)\times (9-6)}
=\sqrt{9\times 3\times 2\times 4}
={6\sqrt{6}\ cm^{2}}
Find the area of the parallelogram with sides
11 cm
and
13 cm
and one of the diagonals as
16 cm.
Report Question
0%
23\sqrt{32}
sq. cm
0%
25\sqrt{35}
sq. cm
0%
24\sqrt{35}
sq. cm
0%
None of these
Explanation
ar
\parallel
gm ABCD =
2\times ar\triangle ABC
ar
\triangle
ABC =
\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } ,\quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 16+13+11 }{ 2 } =20cm
\therefore
ar
\triangle
ABC =
\sqrt { 20\left( 20-16 \right) \left( 20-13 \right) \left( 20-11 \right) } =\sqrt { 20\times 4\times 7\times 9 } =\sqrt { 5\times 4\times 4\times 7\times 9 } =4\times 3\sqrt { 35 } =12\sqrt { 35 } { cm }^{ 2 }
\therefore
ar
\triangle
ABCD =
2\times 12\sqrt { 35 } =24\sqrt { 35 } { cm }^{ 2 }
Find the area of the quadrilateral whose sides are
9 m ,40 m, 28 m, 15 m
. The angle between first two sides is
90^o
.
Report Question
0%
348
sq. m
0%
315
sq. m
0%
306
sq. m
0%
None of these
Explanation
Area of quadrilateral
ABCD
= ar
[\triangle ABC]
+ ar
[\triangle ACD]
In
\triangle ABC
:
ar\ [\triangle ABC] = \dfrac { 1 }{ 2 } \times BC\times AB\\=\dfrac { 1 }{ 2 } \times 40m\times 9m=180{ m }^{ 2 }
Using pythagoras theorem,
AC= \sqrt { { AB }^{ 2 }+{ BC }^{ 2 } } \\ =\sqrt { { \left( 9 \right) }^{ 2 }+{ \left( 40 \right) }^{ 2 } }\\ =\sqrt { 1681 } =41m
Using Heron's formula,
ar [\triangle ACD] = \sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } \\\quad s=\dfrac { a+b+c }{ 2 } \\\ \ \ \quad =\dfrac { 41+28+15 }{ 2 } \\\quad \ \ \ =\dfrac { 84 }{ 2 } =42m
ar [\triangle ACD ]= \sqrt { 42\left( 42-41 \right) \left( 42-28 \right) \left( 42-15 \right) }\\ \quad \quad \quad \ \ \ \quad =\sqrt { 42\times 1\times 14\times 27 } =126{ m }^{ 2 }
Therefore, area of quadrilateral
ABCD
=180 + 126
=306\ m^{2}
Find the area of the parallelogram with sides
9 cm
and
11 cm
and one of the diagonals as
14 cm.
Report Question
0%
22\sqrt{15}
0%
24\sqrt{17}
0%
21\sqrt{17}
0%
None of these
Explanation
Area of
\parallel
gm ABCD = 2
\times
area
\triangle
ABC
ar
\triangle
ABC =
\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } ,\quad \& \quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 14+11+19 }{ 2 } =17cm
\therefore
ar
\triangle
ABC =
\sqrt { 17\left( 17-14 \right) \left( 17-11 \right) \left( 17-9 \right) } =\sqrt { 17\times 3\times 6\times 8 } =12\sqrt { 17 } { cm }^{ 2 }
Therefore, ar
\parallel
gm ABCD = 2
\times
12\sqrt { 17 } =24\sqrt { 17 } { cm }^{ 2 }
The parallel sides of a parallelogram are
60
m and
25
m and one of the diagonals is
65
m. Find the area of the parallelogram,
Report Question
0%
1430
sq m
0%
1576
sq m
0%
1500
sq m
0%
None of these
Explanation
The area of parallelogram
ABCD = 2 \times Ar \triangle ABC
Now,
Ar\ \triangle ABC =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) } \quad \\ s=\dfrac { a+b+c }{ 2 } \\=\dfrac { 65+60+25 }{ 2 } \\=75m
Thus,
\therefore Ar \triangle ABC = \sqrt { 75\left( 75-65 \right) \left( 75-60 \right) \left( 75-25 \right) } \\=\sqrt { 75\times 10\times 15\times 50 } \\=750{ m }^{ 2 }
Thus, area of parallelogram
=2\times 750\ m^2
=1500\ m^2
Find the area of an equilateral triangle each of whose side is 4 cm long?
Report Question
0%
2\sqrt { 3 }
0%
3\sqrt { 3 }
0%
5\sqrt { 3 }
0%
4\sqrt { 3 }
Explanation
solution:
Area = \dfrac{\sqrt{3}}{4} r^2
Area = \dfrac{\sqrt{3}}{4} 4^2
Area = \dfrac{\sqrt{3}}{1} 4
hence the correct opt: D
In the given figure, the area of the
\triangle {ABC}
is
Report Question
0%
13.24{cm}^{2}
0%
12.28{cm}^{2}
0%
11.32{cm}^{2}
0%
15.37{cm}^{2}
Explanation
We know that the area of the triangle using heron's formula is given by
Area
= \sqrt{s(s-a)(s-b)(s-c)}
So,
S = \dfrac{8+4+11}{2} = \dfrac{23}{2} = 11.5
Area
= \sqrt{11.5(11.5-11)(11.5-8)(11.5-4)}
=\sqrt{11.5\times 0.5\times 3.5\times 7.5}
= 12.28\text{ cm}^{2}
If the sides of a triangle are
\dfrac{y}{z} + \dfrac{z}{x},\dfrac{z}{x} + \dfrac{x}{y}
and
\dfrac{x}{y} + \dfrac{y}{z}
then its area is
Report Question
0%
xyz
0%
\sqrt {\dfrac{x}{y} + \dfrac{y}{z} + \dfrac{z}{x}}
0%
\sqrt {xyz}
0%
\dfrac{{{x^2}{y^2}{z^2}}}{2}
A triangular park in a city has dimensions 100m X 90m X110m.A contract is given to a company for planting grass in the park at the rate of Rs.4000 per hectare.Find the amount to be paid to the company.(Take
\sqrt{2}=1.414
)
Report Question
0%
Rs.
4532.90
0%
Rs.
4242
0%
Rs.
1696.80
0%
Rs.
1000
Explanation
Heron's\ Formula\ :
Area of a triangle =
\Delta=\sqrt{s(s-a)(s-b)(s-c)}
where
s
is the semi-perimeter and
a,\ b
and
c
are the sides of the triangle.
s=\dfrac{a+b+c}{2}
Here, for the triangular park,
a=100\ m,\ \ b=90\ m,\ \ c=110\ m
and
s=\dfrac{100+90+110}{2}=150\ m
Area of the triangular park =
\Delta=\sqrt{150\times50\times60\times40}=3000\sqrt{2}\ m^2=0.3\sqrt{2}\ ha=0.4242\ ha
Rate of planting grass =
Rs.\ 4000\ /ha
So, the amount to be paid =
4000\times0.4242=Rs.\ 1696.80
.
[C]
Find the area of a triangle whose two sides are
8
cm and
11
cm and the perimeter is
32
cm.
Report Question
0%
8cm^2
0%
8\sqrt{30}cm^2
0%
\dfrac{8}{\sqrt{30}}cm^2
0%
24cm^2
Explanation
Let third side be
x
Perimeter
=8+11+x
19+x=32
x=13
s=\cfrac { 32 }{ 2 } =16
Heron's formula
A=\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right) }
=\sqrt { 16\left( 16-8 \right) \left( 16-11 \right) \left( 16-13 \right) }
=\sqrt { 16\times 8\times 5\times 3 }
=8\sqrt { 30 }\ cm^2
One side of an equilateral triangle measures
8
cm. Find its area using Heron's formula. What is its altitude
Report Question
0%
12\sqrt 3\ \text{cm}^2, 3\sqrt 3
cm
0%
16\sqrt 3\ \text{cm}^2, 4\sqrt 3
cm
0%
14\sqrt 3\ \text{cm}^2, \dfrac {7}{2}\sqrt 3
cm
0%
20\sqrt 3\ \text{cm}^2, 5\sqrt 3
cm
Explanation
According to the Heron's formula, Area (A) of the triangle having sides
a,b,c
units is
A=\sqrt{s(s-a)(s-b)(s-c)}
where
s=\cfrac{a+b+c}{2}
For the given triangle,
a=b=c=8cm
s=\cfrac{8+8+8}{2}=12
A=\sqrt{12(12-8)(12-8)(12-8)}
A=\sqrt{3\times 4\times 4^{3}}
=4\times 4\sqrt{3}
=16\sqrt{3}
Area of the triangle =
\cfrac{1}{2}\times base \times altitude=16\sqrt{3}
\cfrac{1}{2}\times 8 \times
altitude
=16\sqrt{3}
Altitude
=\cfrac{16\sqrt{3}}{4}=4\sqrt{3}
The perimeter of a triangle is
300m
. If its sides are in the ratio
3:5:7
. Find the area of the triangle.
Report Question
0%
1500\sqrt{5}m^2
0%
1500m^2
0%
1500\sqrt{3}m^2
0%
1100\sqrt{3}m^2
Explanation
Let, 1 side be =
3x
2 side be =
5x
3 side be =
7x
According to question,
3x+5x+7x=300
\implies x= 20
So, sides are
60 ,100, 140
Area =
\sqrt {s(s-a)(s-b)(s-c)}
s=semi-perimeter
s=150
,
a = 60
,
b = 100
,
c = 140
Area=
\sqrt {150(150-60)(150-100)(150-140)}
\implies \sqrt{150(90)(50)(10)}
\implies1500\sqrt3\ m^2
Find the area of a triangle whose sides are 9 cm, 12 cm, and 15 cm.
Report Question
0%
34cm^2
0%
44cm^2
0%
54cm^2
0%
55cm^2
Explanation
Given sides of the triangle
a=9
cm
b=12
cm
c=15
cm
The given triangle is a right angle triangle
because
9^2+12^2=15^2
\therefore
Area
=\dfrac{1}{2}\times 9\times 12=54
sq cm
Area
=54
sq cm.
The perimeter of a triangle field is
450\ m
and its sides are in the ratio
25:17:12
. Find the area of the triangle.
Report Question
0%
2250m^2
0%
6250m^2
0%
5250m^2
0%
6050m^2
Explanation
Let, 1 side be =
25x
2 side be =
17x
3 side be =
12x
According to question,
25x+17x+12x=450
\implies x= \dfrac{450}{54}
\implies x=\dfrac{25}{3}
So, sides are
\dfrac{625}{3} , \dfrac{425}{3}, \dfrac{100}{1}
Area =
\sqrt {s(s-a)(s-b)(s-c)}
s=semi-perimeter
s= 225
,
a = \dfrac{625}{3}
,
b = \dfrac{425}{3}
,
c = \dfrac{100}{1}
Area=
\sqrt {225(225-\dfrac{625}{3})(225-\dfrac{425}{3})(225-100)}
\implies \sqrt{225(\dfrac{50}{3})(\dfrac {250}{3})(125)}
\implies6250\ m^2
Find the area of triangle of sides
6cm ,8cm ,10cm
Report Question
0%
24cm^2
0%
12cm^2
0%
30cm^2
0%
none
Explanation
The sides are
6cm,8cm,10cm
s=\dfrac {6+8+10}2=\dfrac {24}2=12
The area is given as
\sqrt {s(s-a)(s-b)(s-c)}\\\sqrt {12(6)(4)(2)}\\\sqrt {576}=24cm^2
Find the area of a triangle whose sides are respectively
150\ cm
,
120\ cm
, and
200\ cm.
Report Question
0%
8545.77\text{ sq. cm}
0%
8966.57\text{ sq. cm}
0%
9257.66\text{ sq. cm}
0%
5627.66 \text{ sq. cm}
Explanation
Let
a=150\ cm,\ b=120\ cm
and
c=200\ cm.
s=\dfrac{a+b+c}{2}
\Rightarrow s=\dfrac{150+120+200}{2}
\Rightarrow s=235\ cm
Now, by using the heron's formula,
Area
=\sqrt{s(s-a)(s-b)(s-c)}
=\sqrt{235(235-150)(235-120)(235-200)}
=\sqrt{235(85)(115)(35)}
=\sqrt{80399375}
=8966.57\text{ sq. cm}
If every side of a triangle is doubled, the area of the new triangle is
K
times the area of the old one. Find the value of
K
.
Report Question
0%
\sqrt{2}
0%
2
0%
3
0%
4
Explanation
Let, the sides of the original triangle be
a,b
and
c
so, the semi-perimeter,
s=\dfrac{a+b+c}{2}
Original area
=\sqrt{s(s-a)(s-b)(s-c)}
Now every side is doubled
So, the new sides are
2a, 2b
and
2c
new semi-perimeter,
s'=\dfrac{2a+2b+2c}{2}=2\left(\dfrac{a+b+c}{2}\right)=2s
New area
=\sqrt{s'(s'-2a)(s'-2b)(s'-2c)}
=\sqrt{(2s)(2s-2a)(2s-2b)(2s-2c)}
=\sqrt{2.2.2.2s(s-a)(s-b)(s-c)}
=4\sqrt{s(s-a)(s-b)(s-c)}
=4\times Original\ Area
Hence, the value of
K
is
4
.
Use Heron's formula to find the area of a triangle of lengths
5, 7
and
8
.
Report Question
0%
10\sqrt{3}
0%
20\sqrt{3}
0%
2\sqrt{6}
0%
20\sqrt{6}
Three sides of a triangular field are 20m, 21m, and 29m long, respectively. The area of the field is :
Report Question
0%
215{ m }^{ 2 }
0%
230{ m }^{ 2 }
0%
210{ m }^{ 2 }
0%
None of these
Explanation
Given: Sides of the triangular field;
a=20m, b=21m, c=39m
Now, Semiperimeter
S = \dfrac{a+b+c}{2} = \dfrac{20+21+29}{2} = 35m
Area = \sqrt{s\times (s-a)\times (s-b)\times (s-c)}
= \sqrt{35\times (35-20)\times (35-21)\times (35-29)}
= \sqrt{35\times 15\times 14\times 6}
=210 sq.m
The area of a triangle whose sides are 15 m, 16 m and 17 m is :
Report Question
0%
24\sqrt { 4 } { m }^{ 2 }
0%
24\sqrt { 3 } { m }^{ 2 }
0%
24\sqrt { 21 } { m }^{ 2 }
0%
None of these
Explanation
The sides of the triangle are
a = 15 \text{ m }, b = 16 \text{ m }, c = 17 \text{ m }
Area of the triangle is given by
S = \cfrac {a + b + c}{2}
= \cfrac {15 + 16 + 17}{2}
= \cfrac {48}{2}
= 24 \text{ m}
Area
= \sqrt {S(S - a)(S - b)(S - c)}
= \sqrt {24 (25 - 15) (24 - 16) (24 - 17)}
= \sqrt {24\times 9\times 8\times 7}
= \sqrt {\underline {8}\times \underline {3\times 3}\times 3\times \underline {8}\times 7}
= 24\sqrt {21} \text{ sq. m.}
The sides of a triangle are
7
cm,
9
cm and
14
cm. Its area is
Report Question
0%
12\sqrt 5 \ \text{cm}^2
0%
12\sqrt 3 \ \text{cm}^2
0%
24\sqrt 5 \ \text{cm}^2
0%
63 \ \text{cm}^2
Explanation
Area of triangle =
\sqrt{S(S-a)(S-b)(S-c)}
S=\dfrac{a+b+c}{2}
Given
a= 7
cm
b= 9
cm
c= 14
cm
S= \dfrac{7+9+14}{2}
=\dfrac{30}{2}
S= 15 cm
\therefore
Area of triangle =
\sqrt{S(S-a)(S-b)(S-c)}
=\sqrt{15(15-7)(15-9)(15-14)}\\
=\sqrt{15.8.6.1}\\
=\sqrt{720}\\
=\sqrt{5\times 144}\\
=\sqrt{12\times 12\times 5}\\
=12\sqrt{5}cm^{2}\\
\therefore
Area of triangle =
12.\sqrt{5}\ cm^{2}
So, the answer is A.
12.\sqrt{5}\ cm^{2}
The sides of a triangle are in the ratio
3:5:7.
If the perimeter of the triangle is
60
cm, then its area
Report Question
0%
60\sqrt 3 \ \text{cm}^2
0%
30\sqrt 3\ \text{cm}^2
0%
15\sqrt 3 \ \text{cm}^2
0%
120\ \text{cm}^2
Explanation
Given sides in the ratio
3:5:7
perimeter of the triangle
=60cm
3x+5x+7x=60
\Rightarrow 15x=60
\Rightarrow x=60/15
\Rightarrow x=4
3x=3\times 4=12
cm
5x=5\times 4=20
cm
7x=7\times 4=28
cm
Let
S
be the semiperimeter of given triangle.
S=\dfrac{1}{2}(a+b+c)
=\dfrac{1}{2}\cdot 60
=30
Now use formula foe area of triangle
Area
=\sqrt{30(30-12)(30-20)(30-28)}
=\sqrt{30\cdot18\cdot10\cdot2}
=\sqrt{60\cdot180}
=\sqrt{10800}
=\sqrt{3600\cdot3}
=60\sqrt{3}cm^2
\therefore
Area of triangle
=60\sqrt{3}cm^2
.
The percentage increase in the area of a triangle if its each side is doubled, is
Report Question
0%
200\%
0%
400\%
0%
300\%
0%
500\%
Explanation
If the sides of triangle are 4, 5 and 6 cm. Then the area (in sq cm) of triangle is
Report Question
0%
\dfrac{\pi}{4}
0%
\dfrac{\pi}{4} \sqrt{7}
0%
\dfrac{4}{15}
0%
\dfrac{4}{15} \sqrt{7}
0%
\dfrac{15}{4} \sqrt{7}
Explanation
Given, triangle of sides
a,b,c=4,5,6cm
\therefore S=\dfrac{a+b+c}{2}
=\dfrac{4+5+6}{2}=\dfrac{15}{2}
Then, area of triangle
A=\sqrt{S(S-a)(S-b)(S-c)}
=\sqrt{\dfrac{15}{2}\left(\dfrac{15}{2}-4\right)\left(\dfrac{15}{2}-5\right)\left(\dfrac{15}{2}-6\right)}
=\sqrt{\dfrac{15}{2}.\left(\dfrac{7}{2}\right)\left(\dfrac{5}{2}\right)\left(\dfrac{3}{2}\right)}
=\dfrac{15}{4}\sqrt{7}
Find the area of equilateral triangle each of whose sides measures 20 cm.
Report Question
0%
173
{cm^2}
0%
150
{cm^2}
0%
120
{cm^2}
0%
153
{cm^2}
Explanation
Area of Equilateral Triangle =
\dfrac{\sqrt{3}{b^2}}{4}
where b is the Side of the Triangle.
Area=
\dfrac{\sqrt{3}\times {20^2}}{4}
Area=
173.2{cm^2}
Find the area of equilateral triangle (in
{cm^2}
)each of whose sides measure 18 cm.
Report Question
0%
150
0%
140
0%
180
0%
190
Explanation
Area of Equilateral Triangle =
\dfrac{\sqrt{3}{a^2}}{4}
where
a
is the Side of the Triangle.
Given
a= 18\ cm
Area
=\dfrac{\sqrt{3}\times {18^2}}{4}
Area
=140.29\ {cm^2}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 9 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page