Explanation
$$\textbf{Step 1 : Find the sides of triagnle}$$
$$\text{Let the sides of the triangle be 12a, 25a, 17a }$$ $$\text{We know that perimeter of the triangle = Sum of all sides}$$
$$\Rightarrow\text{ 12a + 25a + 17a = 54a}$$
$$\text{Given, perimeter of the triangle = 540 m }$$ $$\Rightarrow\text{54a = 540 m}$$ $$\text{ a = 10 m}$$ $$\text{So, the lengths of the sides of triangle are }$$
$$\text{12a = 120 m}$$
$$\text{25a = 250 m}$$
$$\text{17a = 170 m}$$
$$\textbf{Step 2 : Find the area of triangle using Heron's formula}$$
$$\text{We can use Heron's formula to get the area of triangle}$$
$$\text{Area of triangle with sides with sides a, b, c and semi perimeter s}$$
$$\text{are } \sqrt { s(s-a)(s-b)(s-c)} \text{ respectively}$$.
$$\text{and s =}$$ $$\dfrac{a+b+c}{2}$$
$$\text{For triangle with sides 120 m, 250 m and 170 m, }$$
$$\text{s =}$$ $$\dfrac { 120 + 250 + 170 }{ 2 }$$
$$\text{s = 270 m}$$ $$\text{Substituting the sides 120 m, 250 m and 170 m in the Heron's formula, we get}$$
$$\Rightarrow A= \sqrt { 270(270-120)(270-250)(270-170) } $$
$$=\sqrt { 270\times 150\times 20\times 100 } $$
$$=\sqrt { 9\times30\times30\times5\times20\times20\times5} $$
$$= 3\times 30\times 5 \times 20$$
$$= 9000{m}^{2}$$
$$\textbf{Hence , area of triangle is 9000}$$ $$m^2$$
A traffic signal board, indicating 'SCHOOLAHEAD', is an equilateral triangle with side $$a$$. Find the area of the signal board, using Heron's formula. If its perimeter is $$180 cm$$, what will be the area of the signal board?
Please disable the adBlock and continue. Thank you.