CBSE Questions for Class 9 Maths Number Systems Quiz 2 - MCQExams.com

Two rational numbers between $$\dfrac{2}{3}$$ and $$\dfrac{5}{3}$$ are :
  • $$\dfrac{1}{6}$$ and $$\dfrac{2}{6}$$
  • $$\dfrac{1}{2}$$ and $$\dfrac{2}{1}$$
  • $$\dfrac{5}{6}$$ and $$\dfrac{7}{6}$$
  • $$\dfrac{2}{3}$$ and $$\dfrac{4}{3}$$
State true or false:
There are numbers which cannot be written in the form $$\frac{p}{q}$$, where $$q\neq 0$$  and both p, q are integers.
  • True
  • False
The value of $$2\sqrt {3} + \sqrt {3}$$ is equal to
  • $$2\sqrt {6}$$
  • $$3\sqrt {3}$$
  • $$4\sqrt {6}$$
  • $$6$$
Between any two rational numbers, 
  • there is no rational number
  • there is exactly one rational number
  • there are infinitely many rational numbers
  • there are only rational numbers and no irrational numbers
Every rational number is
  • A natural number
  • An integer
  • A real number
  • A whole number
The product of a non - zero rational number with an irrational number is always :
  • Irrational number
  • Rational number
  • Whole number
  • Natural number
$$\sqrt { 2 } ,\sqrt { 3 }$$ are
  • Whole numbers
  • Rational numbers
  • Irrational numbers
  • Integers
State whether the given statement is True or False.
After rationalising the denominator of $$\dfrac{5}{3\sqrt{2}-2\sqrt{3}}$$, we get its denominator as $$7.$$
  • True
  • False
Find the product. $$(a^2) (2a^{22}) (4a^{26})$$

  • $$8a^{40}$$
  • $$8a^{50}$$
  • $$8a^{30}$$
  • $$8^{20a}$$
The value of $$(6 + \sqrt{27}) - (3 + \sqrt{3}) + (1 - 2\sqrt{3})$$ when simplified is :
  • positive and irrational
  • negative and rational
  • positive and rational
  • negative and irrational
The value of $$\cfrac{3^0+7^0}{5^0}$$ is:
  • $$2$$
  • $$0$$
  • $$\dfrac{9}{5}$$
  • $$\dfrac{1}{5}$$
$$\sqrt{5}$$ is an irrational number.
  • True
  • False
Find the five rational numbers between  $$\displaystyle \frac{1}{2}$$ and $$\displaystyle \frac{3}{2}$$
  • $$0.5 < 0.6 < 0.7 < 0.8 ... < 1.1 < ... < 1.15 < 1.50$$
  • $$0.5 < 0.6 < 1.7 < 3.8 ... < 1.8< ... < 1.15 < 1.50$$
  • $$0.5 < 0.6 < 0.7 < 2.8 ... < 1.1 < ... < 1.15 < 1.50$$
  • $$0.5 < 0.6 < 0.7 < 0.8 ... < 3.1 < ... < 1.15 < 1.50$$
Which of the following numbers are rational ?

  • $$1$$
  • $$ -6$$
  • $$3\dfrac{1}{2}$$
  • All above are rational
The rationalizing factor of $$(a+\sqrt{b})$$ is
  • $$a-\sqrt{b}$$
  • $$\sqrt{a}-b$$
  • $$\sqrt{a}-\sqrt{b}$$
  • None of these
Simplify:
$$3\sqrt{3} + 10\sqrt{3}$$
  • $$13\sqrt{3}$$
  • $$10\sqrt{3}$$
  • $$12\sqrt{3}$$
  • $$11\sqrt{3}$$
The value of $$5\sqrt{3} - 3\sqrt{12} + 2\sqrt{75} $$ on simplifying is :
  • $$5\sqrt{3}$$
  • $$6\sqrt{3}$$
  • $$\sqrt{3}$$
  • $$9\sqrt{3}$$
State True or False.
A rational number can always be written in a fraction $$\dfrac{a}{b}$$, where a and b are not integers $$(b \neq 0)$$.
  • True
  • False
Find conjugate of:
$$\sqrt{3}+\sqrt{2}$$
  • $$\sqrt{3}-\sqrt{2}$$
  • $$\sqrt{3}+\sqrt{2}$$
  • $$\sqrt{3}\sqrt{2}$$
  • None of these
Rationalise the denominator of :
$$\displaystyle\ \frac{\sqrt{6}}{\sqrt{12}}$$
  • $$\displaystyle\ \frac{\sqrt{2}}{6}$$
  • $$\displaystyle\ \frac{\sqrt{2}}{5}$$
  • $$\displaystyle\ \frac{\sqrt{2}}{2}$$
  • $$\displaystyle\ \frac{\sqrt{2}}{3}$$
Find conjugate of:
3$$\sqrt{2}$$ -1


  • 3$$\sqrt{2}$$ +1
  • 3$$\sqrt{2}$$ -1
  • 3$$\sqrt{2}$$
  • None of these
Rationalise the denominator of :
$$\displaystyle\ \frac{2\sqrt{2}}{\sqrt{3}}$$
  • $$\displaystyle\ \frac{2\sqrt{7}}{3}$$
  • $$\displaystyle\ \frac{2\sqrt{6}}{3}$$
  • $$\displaystyle\ \frac{2\sqrt{2}}{3}$$
  • $$\displaystyle\ \frac{2\sqrt{6}}{10}$$
Rationalise the denominator of :
$$\displaystyle\ \frac{6}{\sqrt{10}-2}$$
  • $$\sqrt{10}-2$$
  • $$\sqrt{10}+2$$
  • $$2\sqrt{10}$$
  • None of these
Rationalise the denominator of:
$$\displaystyle\ \frac{2}{\sqrt{5}+\sqrt{3}}$$
  • $$\sqrt{5}-\sqrt{3}$$
  • $$\sqrt{4}-\sqrt{3}$$
  • $$\sqrt{2}-\sqrt{3}$$
  • $$\sqrt{6}-\sqrt{3}$$
Rationalise the denominator

(i) $$\displaystyle\ \frac{22}{2\sqrt{3}+1}$$
  • $$(2\sqrt{3}-1)$$
  • $$3(2\sqrt{3}-1)$$
  • $$2(2\sqrt{3}-1)$$
  • $$4(2\sqrt{3}-1)$$
Write the simplest rationalisation factor of the following surds:
$$\sqrt{32}$$
  • $$\sqrt{2}$$
  • $$\sqrt{7}$$
  • $$\sqrt{5}$$
  • $$\sqrt{3}$$
State whether true or false.
$$\displaystyle \frac{5}{11}$$ is a rational number.

  • True
  • False
Rationalise the denominator of :
$$\displaystyle\ \frac{5}{\sqrt{7}+\sqrt{2}}$$
  • $$\sqrt{7}+\sqrt{2}$$
  • $$\sqrt{7}-\sqrt{2}$$
  • $$\sqrt{7}\sqrt{2}$$
  • None of these
State true or false:
There can be a pair of irrational numbers whose sum is irrational such as
$$\displaystyle \sqrt{3}+2$$ and $$\displaystyle 5+\sqrt{2}$$.
  • True
  • False
State true or false:
$$\sqrt3$$ is an irrational number

  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers