CBSE Questions for Class 9 Maths Number Systems Quiz 7 - MCQExams.com

Say true or false:
$$87, 54, 0, -13, \sqrt{16}$$ are integers 

  • True
  • False
Simplify:
$$7\sqrt{48}-\sqrt{72}-\sqrt{27}+3\sqrt{2}$$
  • $$25\sqrt{3} - 13\sqrt{2}$$
  • $$5\sqrt{3} - 3\sqrt{2}$$
  • $$25\sqrt{3} - 9\sqrt{2}$$
  • $$25\sqrt{3} - 3\sqrt{2}$$
$$\sqrt 5$$ is
  • an integer
  • a rational number
  • an irrational number
  • none of these
Insert two irrational numbers between $$5$$ and $$6$$.
  • $$\sqrt{36},\,\sqrt{25}$$
  • $$\sqrt{32},\,\sqrt{33}$$
  • $$\sqrt{36},\,\sqrt{49}$$
  • $$\sqrt{24},\,\sqrt{33}$$
Simplify 
$$\displaystyle 4\sqrt{12}-\sqrt{75}-7\sqrt{48}$$
  • $$25\sqrt{3}$$
  • $$-25 \sqrt{3}$$
  • $$5 \sqrt{3}$$
  • $$-5 \sqrt{3}$$
Which of the following is an irrational number?
  • $$\dfrac {22}{7}$$
  • $$3.141592$$
  • $$2.78181818$$
  • $$0.123223222322223.......$$
Find the product of following with its conjugate pair. 
$$\displaystyle \sqrt{5} + 1$$
  • conjugate pair $$= \sqrt{5}+1$$, product  $$3$$
  • conjugate pair $$= \sqrt{5}-1$$, product  $$4$$
  • conjugate pair $$= \sqrt{5}+1$$, product  $$4$$
  • conjugate pair $$= \sqrt{5}-1$$, product  $$3$$
Give an example of two irrational numbers, whose difference is an irrational number.
  • $$4\sqrt{3},2\sqrt{3}$$
  • $$\sqrt{3},\sqrt{3}$$
  • $$2\sqrt{3},2\sqrt{3}$$
  • $$4\sqrt{3},4\sqrt{3}$$
Give an example of two irrational numbers, whose difference is a rational number.
  • $$4+\sqrt{2}, 2+\sqrt{2}$$
  • $$4-\sqrt{2}, 2+\sqrt{2}$$
  • $$4+\sqrt{2}, 2-\sqrt{2}$$
  • $$4+\sqrt{2}, -2-\sqrt{2}$$
Write two irrational numbers between $$0.21$$ and $$0.2222...$$
  • $$0.21010010001...$$
  • $$0.2102020202...$$
  • $$0.21020020002...$$
  • $$0.210101010101...$$
The value of $$5\sqrt{3}-3\sqrt{12}+2\sqrt{75}$$ on simplifying is 
  • $$5\sqrt{3}$$
  • $$6\sqrt{3}$$
  • $$\sqrt{3}$$
  • $$9\sqrt{3}$$
Say true or false:$$0.120 1200 12000 120000 $$....is a rational number
  • True
  • False
The product of $$4\sqrt{6}$$ and $$3\sqrt{24}$$ is
  • 124
  • 134
  • 144
  • 154
The value of $$ \displaystyle 2\sqrt{3}-3\sqrt{12}+5\sqrt{75} $$ is equal to:
  • $$ \displaystyle 4\sqrt{3} $$
  • $$ \displaystyle 7\sqrt{5} $$
  • $$ \displaystyle 3\sqrt{5} $$
  • $$ \displaystyle 21\sqrt{3} $$
State True or False.
The five rational numbers between $$\dfrac{3}{5}$$ and $$\dfrac{4}{5}$$ are $$ \displaystyle \frac{19}{30},\frac{20}{30},\frac{21}{30},\frac{22}{30},\frac{23}{30}$$.
  • True
  • False
State TRUE or FALSE
The three rational number between $$\dfrac{1}{3}$$ and $$\dfrac{1}{2}$$ are $$\displaystyle\frac{9}{24},\frac{10}{24},\frac{11}{24}$$.
  • True
  • False
State True or False.
$$\sqrt{4}$$ is an irrational number.
  • True
  • False
If $$\displaystyle 64^{a}=\frac{1}{256^{b}}$$, then $$3a + 4b$$ equals:
  • $$2$$
  • $$4$$
  • $$8$$
  • $$0$$
Give an example of two irrational numbers, whose sum is an irrational number.
  • $$2\sqrt{5},3\sqrt{5}$$
  • $$2\sqrt{5},-2\sqrt{5}$$
  • $$2+\sqrt{5},2-\sqrt{5}$$
  • $$2+\sqrt{5},3-\sqrt{5}$$
If $$x = 2$$ and $$y = 3$$, then find the value of $$\left[ \displaystyle\frac { 1 }{ x^{ x } } +\displaystyle\frac { 1 }{ y^{ y } }  \right] $$.
  • $$ \displaystyle\frac { -31 }{108 } $$
  • $$ \displaystyle\frac { 31 }{108 } $$
  • $$ \displaystyle\frac { 125 }{171} $$
  • $$ \displaystyle\frac { 153 }{222} $$
By how much does $$\displaystyle \sqrt{12}+\sqrt{18}$$ exceed $$\displaystyle \sqrt{3}+\sqrt{2}$$ ?
  • $$\displaystyle \sqrt{3}+2\sqrt{2}$$
  • $$\displaystyle \sqrt{2}+2\sqrt{3}$$
  • $$\displaystyle \sqrt{3}+\sqrt{2}$$
  • $$\displaystyle \sqrt{3}-2\sqrt{2}$$
Give an example of two irrational numbers, whose sum is a rational number.
  • $$4 +\sqrt{5},-\sqrt{5}$$
  • $$4 +\sqrt{5},\sqrt{5}$$
  • $$4 -\sqrt{5},-\sqrt{5}$$
  • $$ 2+\sqrt{5},2+\sqrt{5}$$
The value of $$512^\frac {-2}{9}$$ is
  • $$\displaystyle \frac {1}{2}$$
  • $$2$$
  • $$4$$
  • $$\displaystyle \frac {1}{4}$$
By how much does $$(\displaystyle 5\sqrt{7}-2\sqrt{5})$$ exceeds $$(\displaystyle 3\sqrt{7}-4\sqrt{5})$$?
  • $$\displaystyle 5(\sqrt{7}+\sqrt{5})$$
  • $$\displaystyle\sqrt{7}+\sqrt{5}$$
  • $$\displaystyle 2(\sqrt{7}+\sqrt{5})$$
  • $$\displaystyle 7(\sqrt{2}+\sqrt{5})$$
The rational number $${\cfrac{0}{7}}$$:
  • Has a positive numerator
  • Has a negative numerator
  • Has either a positive numerator or a negative numerator
  • Has neither a positive numerator nor a negative numerator
If A : The quotient of two integers is always a rational number, and 
R : $$\displaystyle \frac{1}{0}$$ is not rational, then which of the following statements is true ? 
  • A is True and R is the correct explanation of A
  • A is False and R is the correct explanation of A
  • A is True and R is False
  • Both A and R are False
Choose the rational number which does not lie between rational numbers $$ \displaystyle \frac{3}{5} $$ and $$ \displaystyle \frac{2}{3} $$ :
  • $$ \displaystyle \frac{46}{75} $$
  • $$ \displaystyle \frac{47}{75} $$
  • $$ \displaystyle \frac{49}{75} $$
  • $$ \displaystyle \frac{50}{75} $$
The value of $$ \displaystyle \frac{9}{\sqrt{11}+\sqrt{2}} $$ is equal to
  • $$ \displaystyle 9\left ( \sqrt{11}+\sqrt{2} \right ) $$
  • $$9 \displaystyle \left ( \sqrt{11}-\sqrt{2} \right ) $$
  • $$ \displaystyle \sqrt{11}-\sqrt{2} $$
  • $$\dfrac{9}{ \displaystyle \left ( \sqrt{11}-\sqrt{2} \right ) }$$
Choose the rational number which does not lie between rational numbers $$-\cfrac {2}{5}$$ and $$-\cfrac {1}{5}$$
  • $$-\dfrac {1}{4}$$
  • $$-\dfrac {3}{10}$$
  • $$\dfrac {3}{10}$$
  • $$-\dfrac {7}{20}$$
Which of the following numbers is different from others?
  • $$\sqrt 2$$
  • $$\sqrt 3$$
  • $$\sqrt 4$$
  • $$\sqrt 5$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers