Explanation
$${\textbf{Step 1: Define Irrational number.}}$$
$${\text{An irrational number is a number that cannot be expressed as a dfration}}{\text{.}}$$
$${\text{Also, they have decimal expression neither terminate nor become periodic}}{\text{.}}$$
$${\text{Now, check it for all the four options}}{\text{.}}$$
$${\textbf{Step 2: Consider, option A.}}$$
$$\dfrac{22}{7}$$ $$=3.\overset{\centerdot }{\mathop{1}}\,4285\overset{\centerdot }{\mathop{7}}\,$$
$$\text{Where }\centerdot \text{ represent beginning and end of recurring group of numbers}\text{.}$$
$$ \Rightarrow \dfrac{{22}}{7}$$ $${\text{is a rational number as as it is a recurring decimal}}{\text{.}}$$
$${\textbf{Step 3: Consider, option B.}}$$
$$3.141592$$
$${\text{It is a terminating decimal number}}{\text{.}}$$
$$ \Rightarrow {\text{3}}{\text{.141592 is a rational number}}{\text{.}}$$
$${\textbf{Step 4: Consider, option C.}}$$
$$2.78181818$$
$$ \Rightarrow 2.78181818{\text{ is a rational number}}{\text{.}}$$
$${\textbf{Step 5: Consider, option D.}}$$
$$0.123223222322223 \ldots $$
$${\text{It is a non - terminating decimal number and also it is not a recurring decimal}}{\text{.}}$$
$$ \Rightarrow 0.123223222322223 \ldots {\text{ is a irrational number}}{\text{.}}$$
$${\textbf{Final Answer: Hence, option (D)}}$$ $$\mathbf{0.123223222322223 \dots} {\textbf{ is correct answer.}}$$
Please disable the adBlock and continue. Thank you.