Processing math: 11%

CBSE Questions for Class 9 Maths Polynomials Quiz 12 - MCQExams.com

If f(x)=8thenf(x) is called
  • Constant polynomials
  • linear polynomials
  • quadratic polynomials
  • Cubic polynomials
The degree of polynomial is x+2 is:
  • 2
  • 1
  • 3
  • 4
Write the correct alternative answer for the following question:
Which is the degree of the polynomial 2x2+5x3+7 ?
  • 3
  • 2
  • 5
  • 7
The degree of the polynomial x^4 + x^3 is:
  • 2
  • 3
  • 5
  • 4
The number of zeroes of linear polynomial at most is
  • 0
  • 1
  • 2
  • 3
Zero of the polynomial p(x) = \sqrt{3}x + 3 is
  • -\sqrt{3}
  • \dfrac{-\sqrt 3}{3}
  • \dfrac{3}{\sqrt 3}
  • 3\sqrt 3
One zero of p(x)=2x+1 will be
  • \dfrac {1}{2}
  • 3
  • \dfrac {-1}{2}
  • 1
State True/False:-
One of the zeroes of the polynomial x^{2} + 2x - 15 is 11
  • True
  • False
Identify the zeroes of the given polynomial.

p(z)=4z^2-15z\pi -4\pi ^3




  • 4\pi ,\frac{-\pi }{4}
  • -4\pi ,\frac{\pi }{4}
  • 4\pi ,\frac{\pi }{4}
  • -4\pi ,\frac{-\pi }{4}
For p(x) = 5x^2 - \dfrac{2}{3} x + 8, then value of p (3) =
  • 50
  • 51
  • 55
  • 35
\alpha, \beta, \gamma be the zeroes of the expression
ax^{3} + bx^{2} + 4x + 7, then the value of
\alpha\beta + \beta\gamma + \gamma\alpha  is:




  • -4
  • \frac{4}{\alpha}
  • -\frac{4}{\alpha}
  • None of these
If p(x) = 1 + 7x - 9x^2 + \dfrac{2}{3} x^3, then p(-3) =
  • -81
  • -137
  • -119
  • -100
Calculate the number of real numbers k such that f(k)=2 if f(x)={ x }^{ 4 }-3{ x }^{ 3 }-9{ x }^{ 2 }+4.
  • None
  • One
  • Two
  • Three
  • Four
If f(x)=x^{6}-10x^{5}-10x^{4}-10x^{3}-10x^{2}-10x+10, the value of f(11) is
  • 1
  • 10
  • 11
  • 21
Two roots of the equation 4x^3 - px^2+ qx - 2p = 0 are 4 andWhat is the third root?
  • \frac{11}{27}
  • \frac{11}{13}
  • 11
  • \frac{11}{15}
  • -\frac{22}{27}
The equation 8x^{6} + 72x^{5} + bx^{4} + cx^{3} - 687x^{2} - 2160x - 1700 = 0, as shown in the figure, has two complex roots. The product of these complex roots is
535605.jpg
  • -4
  • \dfrac {17}{2}
  • 9
  • \dfrac {-687}{2}
  • \dfrac {427}{2}
Let\,x = \sqrt {3 - \sqrt 5 } \,and\,y = \sqrt {3 + \sqrt 5 } . If the value of expression x - y + 2{x^2}y + 2x{y^2} - {x^4}y + x{y^4} can be expressed in the form \sqrt p  + \sqrt q    where\,p,\,q \in N, then (p+q) has the value equal 
  •   448
  • 610
  • 510
  • 540
The zeros of the polynomial { x }^{ 2 }-9 are 
  • 3,3
  • \sqrt { 3 } ,-\sqrt { 3 }
  • 3,-3
  • -\sqrt { 3 } ,-\sqrt { 3 }
Number of root of equation 
3|x|-|2-x|=1
is 

  • 0
  • 2
  • 4
  • 7
The number of polynomials having zeroes as -2 and 5 is?
  • 0
  • 2
  • 3
  • More than 3
If a + b + 2 c = 0, c\neq 0, then equation $$
  • At least one root in (0, 1)
  • At least one root in (0, 2)
  • At least one root in (-1, 1)
  • None of these
The roots of the equation \left( x-1 \right) ^{ 3 }+8=0 are
  • -1,1+2\omega ,1+{ 2\omega }^{ 2 }
  • -1,1-2\omega ,1-{ 2\omega }^{ 2 }
  • 2,2\omega ,{ 2\omega }^{ 2 }
  • 2,1+2\omega ,1+{ 2\omega }^{ 2 }
Number of common roots of the equation x^4+x^2+1=0 and x^8-1=0 is 
  • zero
  • 1
  • 2
  • 4
For equation { x }^{ 3 }-{ 6x }^{ 2 }+9x+k=0 to have exactly one root in (1, 3), the set of values of k is
  • (-4, 0)
  • (1, 3)
  • (0, 4)
  • None of these
If the sum of two roots of the equation { x }^{ 3 }-p{ x }^{ 2 }+qx-r=0is zero, then
  • pq=r
  • qr=p
  • pr=q
  • pqr=1
Let f ( x ) be a polynomial of degree 5 with leading coefficient unity, such that f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2 and f ( 5 ) = 1 , then 
Sum of the roots of f ( x ) is equal to:

  • 15
  • -15
  • 21
  • Can't be determine
Let f ( x ) be a polynomial of degree 5 with leading coefficient unity, such that f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2 and f ( 5 ) = 1 , then 
Product of the roots of f ( x ) is equal to:
  • 120
  • -120
  • 114
  • -114
Let for a \neq a_1 \neq 0, f(x) = ax^2 +bx +c, g(x) = a_1x^2 +b_1x+c_1 and p(x) =f(x) -g(x). If p(x) =0 only for x= -1 and p(-2) =2 then the value of p(2) is
  • 18
  • 3
  • 9
  • 6
Let f ( x ) be a polynomial of degree 5 with leading coefficient unity, such that f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2 and f ( 5 ) = 1 , then
f ( 6 ) is equal to:
  • 120
  • -120
  • 0
  • 6
The product of the zero of the polynomal { x }^{ 2 }-4x+3 is .... 
  • 4
  • 1
  • -4
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers