CBSE Questions for Class 9 Maths Polynomials Quiz 12 - MCQExams.com

If $$f(x) = 8$$then$$ f(x)$$ is called
  • Constant polynomials
  • linear polynomials
  • quadratic polynomials
  • Cubic polynomials
The degree of polynomial is $$x + 2$$ is:
  • $$2$$
  • $$1$$
  • $$3$$
  • $$4$$
Write the correct alternative answer for the following question:
Which is the degree of the polynomial $$ 2x^{2} + 5x^{3} + 7 $$ ?
  • $$3$$
  • $$2$$
  • $$5$$
  • $$7 $$
The degree of the polynomial $$x^4 + x^3$$ is:
  • $$2$$
  • $$3$$
  • $$5$$
  • $$4$$
The number of zeroes of linear polynomial at most is
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Zero of the polynomial $$p(x) = \sqrt{3}x + 3$$ is
  • $$-\sqrt{3}$$
  • $$\dfrac{-\sqrt 3}{3}$$
  • $$\dfrac{3}{\sqrt 3}$$
  • $$3\sqrt 3$$
One zero of $$p(x)=2x+1$$ will be
  • $$\dfrac {1}{2}$$
  • $$3$$
  • $$\dfrac {-1}{2}$$
  • $$1$$
State True/False:-
One of the zeroes of the polynomial $$x^{2} + 2x - 15$$ is $$11$$
  • True
  • False
Identify the zeroes of the given polynomial.

$$p(z)=4z^2-15z\pi -4\pi ^3$$




  • $$4\pi ,\frac{-\pi }{4}$$
  • $$-4\pi ,\frac{\pi }{4}$$
  • $$4\pi ,\frac{\pi }{4}$$
  • $$-4\pi ,\frac{-\pi }{4}$$
For $$p(x) = 5x^2 - \dfrac{2}{3} x + 8$$, then value of $$p (3) = $$
  • $$50$$
  • $$51$$
  • $$55$$
  • $$35$$
$$ \alpha, \beta, \gamma$$ be the zeroes of the expression
$$ax^{3} +

bx^{2} + 4x + 7$$, then the value of
$$ \alpha\beta + \beta\gamma + \gamma\alpha$$  is:




  • -4
  • $$\frac{4}{\alpha}$$
  • $$-\frac{4}{\alpha}$$
  • None of these
If $$p(x) = 1 + 7x - 9x^2 + \dfrac{2}{3} x^3$$, then $$p(-3) =$$
  • $$-81$$
  • $$-137$$
  • $$-119$$
  • $$-100$$
Calculate the number of real numbers $$k$$ such that $$f(k)=2$$ if $$f(x)={ x }^{ 4 }-3{ x }^{ 3 }-9{ x }^{ 2 }+4$$.
  • None
  • One
  • Two
  • Three
  • Four
If $$f(x)=x^{6}-10x^{5}-10x^{4}-10x^{3}-10x^{2}-10x+10$$, the value of $$f(11)$$ is
  • $$1$$
  • $$10$$
  • $$11$$
  • $$21$$
Two roots of the equation $$4x^3 - px^2+ qx - 2p = 0$$ are 4 andWhat is the third root?
  • $$\frac{11}{27}$$
  • $$\frac{11}{13}$$
  • 11
  • $$\frac{11}{15}$$
  • $$-\frac{22}{27}$$
The equation $$8x^{6} + 72x^{5} + bx^{4} + cx^{3} - 687x^{2} - 2160x - 1700 = 0$$, as shown in the figure, has two complex roots. The product of these complex roots is
535605.jpg
  • $$-4$$
  • $$\dfrac {17}{2}$$
  • $$9$$
  • $$\dfrac {-687}{2}$$
  • $$\dfrac {427}{2}$$
$$Let\,x = \sqrt {3 - \sqrt 5 } \,and\,y = \sqrt {3 + \sqrt 5 } .$$ If the value of expression $$x - y + 2{x^2}y + 2x{y^2} - {x^4}y + x{y^4}$$ can be expressed in the form $$\sqrt p  + \sqrt q $$   $$where\,p,\,q \in N,$$ then $$(p+q)$$ has the value equal 
  •  $$ 448 $$
  • $$610$$
  • $$510$$
  • $$540$$
The zeros of the polynomial $${ x }^{ 2 }-9$$ are 
  • 3,3
  • $$\sqrt { 3 } ,-\sqrt { 3 } $$
  • 3,-3
  • $$-\sqrt { 3 } ,-\sqrt { 3 } $$
Number of root of equation 
3|x|-|2-x|=1
is 

  • 0
  • 2
  • 4
  • 7
The number of polynomials having zeroes as $$-2$$ and $$5$$ is?
  • $$0$$
  • $$2$$
  • $$3$$
  • More than $$3$$
If a + b + 2 c = 0, $$c\neq 0$$, then equation $$
  • At least one root in (0, 1)
  • At least one root in (0, 2)
  • At least one root in (-1, 1)
  • None of these
The roots of the equation $$\left( x-1 \right) ^{ 3 }+8=0$$ are
  • $$-1,1+2\omega ,1+{ 2\omega }^{ 2 }$$
  • $$-1,1-2\omega ,1-{ 2\omega }^{ 2 }$$
  • $$2,2\omega ,{ 2\omega }^{ 2 }$$
  • $$2,1+2\omega ,1+{ 2\omega }^{ 2 }$$
Number of common roots of the equation $$x^4+x^2+1=0$$ and $$x^8-1=0$$ is 
  • zero
  • 1
  • 2
  • 4
For equation $${ x }^{ 3 }-{ 6x }^{ 2 }+9x+k=0$$ to have exactly one root in (1, 3), the set of values of k is
  • (-4, 0)
  • (1, 3)
  • (0, 4)
  • None of these
If the sum of two roots of the equation $${ x }^{ 3 }-p{ x }^{ 2 }+qx-r=0$$is zero, then
  • pq=r
  • qr=p
  • pr=q
  • pqr=1
Let $$f ( x )$$ be a polynomial of degree 5 with leading coefficient unity, such that $$f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2$$ and $$f ( 5 ) = 1 ,$$ then 
Sum of the roots of $$f ( x )$$ is equal to:

  • $$15$$
  • $$-15$$
  • $$21$$
  • Can't be determine
Let $$f ( x )$$ be a polynomial of degree 5 with leading coefficient unity, such that $$f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2$$ and $$f ( 5 ) = 1 ,$$ then 
Product of the roots of $$f ( x )$$ is equal to:
  • $$120$$
  • $$-120$$
  • $$114$$
  • $$-114$$
Let for $$a \neq a_1 \neq 0, f(x) = ax^2 +bx +c, g(x) = a_1x^2 +b_1x+c_1$$ and $$p(x) =f(x) -g(x)$$. If $$p(x) =0$$ only for $$x= -1$$ and $$p(-2) =2$$ then the value of $$p(2)$$ is
  • $$18$$
  • $$3$$
  • $$9$$
  • $$6$$
Let $$f ( x )$$ be a polynomial of degree 5 with leading coefficient unity, such that $$f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2$$ and $$f ( 5 ) = 1 ,$$ then
$$f ( 6 )$$ is equal to:
  • $$120$$
  • $$-120$$
  • $$0$$
  • $$6$$
The product of the zero of the polynomal $${ x }^{ 2 }-4x+3$$ is .... 
  • 4
  • 1
  • -4
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers