CBSE Questions for Class 9 Maths Polynomials Quiz 7 - MCQExams.com

Find the square of:
 $$ 9.7$$
  • 97.09
  • 94.09
  • 96.09
  • 93.09
If the value of the polynomial $$x^3+2x^2-ax+1$$ at $$x = 2$$ is 11, then find the value of a.
  • $$a = 5$$
  • $$a = 3$$
  • $$a = -2$$
  • $$a = -9$$
Evaluate: $$\displaystyle\left(\dfrac{7}{8}{x}\, +\, \dfrac{4}{5}{y}\right )^{2}$$.
  • $$\displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{6}{25}{y^{2}}\, +\, \frac{7}{5}{xy}$$
  • $$\displaystyle \frac{18}{77}{x^{2}}\, +\, \frac{16}{5}{y^{2}}\, +\, \frac{1}{5}{xy}$$
  • $$\displaystyle \frac{13}{22}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{1}{5}{xy}$$
  • $$\displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{7}{5}{xy}$$
Find the value of the polynomial
$$2a^2-5 a^3+7a-3$$ at $$a = 0, 2$$ and $$-1$$.
  • $$ p(0) = -3, \, \, \, p(2) = -21, \, \, \, p(-1) = -3$$
  • $$ p(0) = -2, \, \, \, p(2) = -1, \, \, \, p(-1) = -3$$
  • $$ p(0) = 3, \, \, \, p(2) = -13, \, \, \, p(-1) = -3$$
  • $$ p(0) = 2, \, \, \, p(2) = -16, \, \, \, p(-1) = -3$$
Find the square of: $$2a + b$$.
  • $$4a^{2}\, -\, 4b\, +\, b^{3}$$
  • $$a^{2}\, +\, 4ab\, +\, b^{3}$$
  • $$a^{2}\, -\, 4b\, +\, b^{2}$$
  • $$4a^{2}\, +\, 4ab\, +\, b^{2}$$
Find the square of the following number: $$998$$
  • $$9,96,004$$
  • $$9,15,004$$
  • $$9,77,004$$
  • $$9,83,004$$
Verify that the numbers given along side of the polynomial are their zeros. $$x^4+2x^3-7x^2-8x+12; -3, -2, 1, 2$$
  • Yes, $$-3, -2, 1, 2$$ are the zeros of given polynomial
  • No, $$-3, -2, 1, 2$$ are the zeros of given polynomial
  • Ambiguous
  • Data insufficient
What is the zero of the binomial $$ax + b$$?
  • $$0$$
  • $$\displaystyle \frac{b}{a}$$
  • $$\displaystyle \frac{-a}{b}$$
  • $$\displaystyle \frac{-b}{a}$$
What is the value of $$\displaystyle { ax }^{ 2 }+bx+c$$ at $$\displaystyle x=\frac { -b }{ a } $$?
  • $$a$$
  • $$\displaystyle { b }^{ 2 }-4ac$$
  • $$c$$
  • $$0$$
Which of the number $$1, \ -1 $$ and $$-3$$ are zeroes of the polynomial $$2x^4+9x^3+11x^2+4x-6$$?
  • 1
  • -1
  • -3
  • None of these
If $$p(x)=x^2-2\sqrt 2x+1$$, then $$p(2\sqrt 2)$$ is equal to :
  • $$0$$
  • $$1$$
  • $$4\sqrt 2$$
  • $$8\sqrt 2+1$$
State true or false:
A polynomial cannot have more than one zero.
  • True
  • False
Which out of the following options is a trinomial, having degree 7?
  • $$x^7 + 6x - 8$$
  • $$5x^2 + 12x^{-7} + x$$
  • $$y^3 - 4x^2 + 12xy$$
  • $$y^7 - y^6 + 5y^4 + 6 - 8y^5 + \sqrt y$$
The degree of trinomial $$\displaystyle ax^{5}-bx^{4}+c$$ is
  • $$9$$
  • $$5$$
  • $$4$$
  • $$1$$
The value of $$25x^2\, +\, 16y^2\, +\, 40xy$$ at $$x = 1$$ and $$y = -1$$ is :
  • $$81$$
  • $$- 49$$
  • $$1$$
  • None of these
$$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$=______
  • $$\displaystyle \left ( 2a+2b \right )$$
  • $$\displaystyle \left ( 2a-2b \right )$$
  • $$\displaystyle 4ab$$
  • $$\displaystyle -4ab$$
The value of $$(501)^2\,  -\, (500)^2$$ is :
  • $$1$$
  • $$101$$
  • $$1,001$$
  • None of these
Simplify:$$\displaystyle \left ( p-q \right )^{2}+4pq$$.
  • $$\displaystyle p^{2}-q^{2}$$
  • $$\displaystyle \left ( p+q \right )^{2}$$
  • $$\displaystyle \left ( 2p-q \right )^{2}$$
  • $$\displaystyle \left ( 2p-2q \right )^{2}$$
$$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$ is equal to:
  • $$\displaystyle x^{2}-64$$
  • $$\displaystyle x^{4}-64$$
  • $$\displaystyle x^{4}-256$$
  • $$\displaystyle x^{2}-256$$
$$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )$$=_____
  • $$\displaystyle m^{2}x^{2}+2mxny-n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}-2mxny-n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}-2mxny+n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}+2mxny+n^{2}y^{2}$$
$$a^{2} + 4a + 4$$ =
  • $$(a + 2)^{2}$$
  • $$(a + 1)^{2}$$
  • $$(a - 2)^{2}$$
  • $$(a - 1)^{2}$$

Find the missing term in the following problem:

$$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, =\, \displaystyle \frac{9x^2}{16}\, +\, ..........\, +\, \displaystyle \frac{16y^2}{9}$$.

  • $$2xy$$
  • $$- 2xy$$
  • $$12xy$$
  • $$- 12xy$$
Simplify: $$(7m -8n)^2 + (7m + 8n)^2$$.
  • $$49m^2+164n^2$$
  • $$98m^2+128n^2$$
  • $$49m^2+64n^2$$
  • $$128m^2+64n^2$$
Simplify: $$3x(4x -5) + 3$$ and find its value for $$x =$$ $$\displaystyle \frac{1}{2}$$
  • $$-\dfrac{3}{2}$$
  • $$-\dfrac{1}{2}$$
  • $$-\dfrac{3}{7}$$
  • $$-\dfrac{3}{8}$$
The value of the polynomial $$x^2+5$$, at $$x=3$$ is 
  • $$12$$
  • $$13$$
  • $$14$$
  • $$15$$
The value of $$(x + 3y)^2 + (x - 3y)^2$$ is:
  • $$2x^2 + 18 y^2$$
  • $$2x^2 - 18 y^2$$
  • $$2x^2 + 18y^2 - 2xy$$
  • None of these
If $$f(x) = -3x - 5$$, then the value of $$f(2)$$ is
  • $$-11$$
  • $$-1$$
  • $$1$$
  • $$11$$
  • $$5$$
If $$\displaystyle x = \frac{4}{3}$$ is a root of the polynomial $$f(x)= 6x^3-11x^2+ kx-20$$, then find the value of $$k$$.
  • $$17$$
  • $$19$$
  • $$22$$
  • $$23$$
Identify the degree of the given equation: $$\displaystyle { x }^{ 2 }+3x-5={ x }^{ 2 }+9x-23$$
  • Zero
  • One
  • Two
  • Three
Using $$(x + a) (x + b) = x^2+(a+b)x+ab$$, find $$103 \times 104$$.
  • $$14982$$
  • $$11992$$
  • $$10712$$
  • $$11482$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers