Explanation
$$\textbf{Step 1: Find x using angle sum property.}$$
$$\text{We know, by angle sum property, the sum of angles of a quadrilateral is }360^o$$. $$\text{The given angles are }70^o,60^o,90^o,x$$. $$\textbf{[Linear pairs are supplementary]}$$ $$\text{Then, }70^o+60^o+90^o+x=360^o$$.
$$\text{Therefore, the unknown angle is:}$$
$$\Rightarrow$$ $$360^o - (70^o + 60^o + 90^o ) =x$$
$$\Rightarrow$$ $$x=360^o - 220^o $$
$$ =140^{\circ}$$.
$$\text{Therefore, the unknown angle is }x=140^o$$.
$$\textbf{Hence, option B is correct.}$$
Let the four angles be $$ \angle A , \angle B , \angle C$$ and $$\angle D$$ .
Then $$ \angle A =120^o, \angle B=73^o , \angle C = 80^o $$ .
We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.
$$\implies$$ $$ \angle A + \angle B + \angle C + \angle D = 360^{o} $$.
Then, $$ \angle D $$ will be given by:
$$\angle D = 360^o - \angle A - \angle B-\angle C $$
$$ \Rightarrow \angle D = 360 ^o-120^o -73^o -80^o $$
$$ \Rightarrow \angle D = 360 - 273^o$$
$$ \Rightarrow \angle D = 87^o$$.
The measure of fourth angle is $$ 87 ^{o}$$.
Therefore, option $$A$$ is correct.
Here, the sum of angle will be $$= 110^o + 80^o + 90^o + 105^o = 385^o > 360^o$$.
We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$. The given angles are $$50^o,130^o,120^o,x$$. Then, $$50^o+130^o+120^o+x=360^o$$.
Therefore, the unknown angle is:
$$\Rightarrow$$ $$360^o - (50^o + 130^o + 120^o ) =x^{\circ}$$
$$\Rightarrow$$ $$x^o=360^o - 300^o =60^{\circ}$$.
Therefore, the unknown angle is $$x^o=60^o$$.
Hence, option $$C$$ is correct.
Please disable the adBlock and continue. Thank you.