Explanation
We know, by angle sum property, the sum of angles of a quadrilateral is 360o. Given, one angle is 108o and remaining three angles are equal.
Let the remaining angles be xo,yo,zo.
Since they are equal, xo+yo+zo= xo+xo+xo=3xo.
Then, 108o+xo+yo+zo=360o
⇒ 108o+3xo=360o
⇒ 360o−108o=3x∘
⇒ 252o=3x∘
⇒ xo=252o3=84∘.
Therefore, each of the three remaining angle is xo=84o.
Hence, option C is correct.
The given angles are, 75o,90o,75o.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o. The given angles are 110o,80o,70o,95o.
Then,
110o+80o+70o+95o.
=190o+165o
=355o≠360o.
Therefore, the given angles are not the angles of a quadrilateral.
Hence, option B is correct.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o.
The given angles are, 70o,95o,105o.
Let the fourth angle be xo.
Then, 70o+95o+105o+xo=360o.
⇒ 360o−(70o+95o+105o)=x∘
⇒ xo=360o−270o=90∘.
Therefore, the fourth angle is xo=90o.
Hence, option A is correct.
The given angles are, 60o,110o,86o.
Then, 60o+110o+86o+xo=360o.
⇒ 360o−(60o+110o+86o)=x∘
⇒ xo=360o−256o=104∘.
Therefore, the fourth angle is xo=104o.
We know, by angle sum property, the sum of all angles of a quadrilateral is 360o.
The given angles are, 70o,120o,65o.
Then, 70o+120o+65o+xo=360o ...{Angle sum property of a quadrilateral}
⇒ 360o−(70o+120o+65o)=x∘
⇒ xo=360o−255o=105∘.
Therefore, the fourth angle is xo=105o.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o. The given angles are ∠A=80o,∠B=70o,∠C=130o,∠D.
Then, ∠A+∠B+∠C+∠D=360o
⟹ 80o+70o+130o+∠D=360o.
⇒ ∠D=360o−(80o+70o+130o)
⇒ ∠D=360o−280o=80∘.
Therefore, the unknown angle is ∠D=80o.
Since M is the midpoint of AB and N is the midpoint of AC, we have
AB=AM+MB and AB=AN+NC
So,
AB=AC[Given]AM+BM=AN+CMAM+BM=AN+BM[Given BM=CN]AM=AN
Hence proved, AM=AN.
Please disable the adBlock and continue. Thank you.