Explanation
Given ratio of angles of quadrilateral $$PQRS$$ is $$3:4:6:7$$
Let the angles of quadrilateral $$PQRS$$ be $$3x,4x,6x,7x$$, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.
$$\Rightarrow \angle P+\angle Q+\angle R+\angle S=360^o$$
$$\Rightarrow 3x+4x+6x+7x=360^o$$
$$\Rightarrow 20x=360^o$$
$$\Rightarrow x=\dfrac{360^o}{20}$$
$$\therefore x=18^o$$.
$$\therefore \angle P =3x=3 \times 18^o =54^o$$,
$$ \angle Q =4x=4\times 18^o =72^o$$,
$$ \angle R =6x=6\times 18^o =108^o$$
and $$ \angle S =7x=7 \times 18^o =126^o$$.
$$\therefore$$ The smallest angle $$=54^o$$.
That is, the statement is false.
Hence, option $$B$$ is correct.
We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$. Given, three angles are equal. Let the measure of each of these angles be $$x$$.
Also, fourth angle $$=69^o$$.Then, $$x+x+x+69^o=360^o$$
$$\Rightarrow 3x+69^o=360^o$$.
$$\Rightarrow$$ $$3x=360^o - 69^o $$
$$\Rightarrow$$ $$3x=291^o$$
$$\Rightarrow x=\dfrac{291^o}{3}\\=97^o$$.
Therefore, the equal angles are each $$=97^o$$.
Given ratio of angles of quadrilateral $$PQRS$$ is $$1:3:7:9$$
Let the angles of quadrilateral $$PQRS$$ be $$x,3x,7x,9x$$, respectively.
$$\Rightarrow x+3x+7x+9x=360^o$$
$$\therefore \angle P =x= 18^o$$,
$$ \angle Q =3x=3\times 18^o =54^o$$,
$$ \angle R =7x=7\times 18^o =126^o$$
and $$ \angle S =9x=9 \times 18^o =162^o$$.
Given ratio of angles of quadrilateral $$PQRS$$ is $$3:5:9:13$$
Let the angles of quadrilateral $$PQRS$$ be $$3x,5x,9x,13x$$, respectively.
$$\Rightarrow 3x+5x+9x+13x=360^o$$
$$\Rightarrow 30x=360^o$$
$$\Rightarrow x=\dfrac{360^o}{30}$$
$$\therefore x=12^o$$.
$$\therefore \angle P =3x= 3\times 12^o=36^o$$,
$$ \angle Q =5x=5\times 12^o =60^o$$,
$$ \angle R =9x=9\times 12^o =108^o$$
and $$ \angle S =13x=13 \times 12^o =156^o$$.
Hence, option $$A$$ is correct.
Please disable the adBlock and continue. Thank you.