Explanation
Given ratio of angles of quadrilateral PQRS is 3:4:6:7
Let the angles of quadrilateral PQRS be 3x,4x,6x,7x, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o.
⇒∠P+∠Q+∠R+∠S=360o
⇒3x+4x+6x+7x=360o
⇒20x=360o
⇒x=360o20
∴x=18o.
∴∠P=3x=3×18o=54o,
∠Q=4x=4×18o=72o,
∠R=6x=6×18o=108o
and ∠S=7x=7×18o=126o.
∴ The smallest angle =54o.
That is, the statement is false.
Hence, option B is correct.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o. Given, three angles are equal. Let the measure of each of these angles be x.
Also, fourth angle =69o.Then, x+x+x+69o=360o
⇒3x+69o=360o.
⇒ 3x=360o−69o
⇒ 3x=291o
⇒x=291o3=97o.
Therefore, the equal angles are each =97o.
Given ratio of angles of quadrilateral PQRS is 1:3:7:9
Let the angles of quadrilateral PQRS be x,3x,7x,9x, respectively.
⇒x+3x+7x+9x=360o
∴∠P=x=18o,
∠Q=3x=3×18o=54o,
∠R=7x=7×18o=126o
and ∠S=9x=9×18o=162o.
Given ratio of angles of quadrilateral PQRS is 3:5:9:13
Let the angles of quadrilateral PQRS be 3x,5x,9x,13x, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is 360^o.
\Rightarrow \angle P+\angle Q+\angle R+\angle S=360^o
\Rightarrow 3x+5x+9x+13x=360^o
\Rightarrow 30x=360^o
\Rightarrow x=\dfrac{360^o}{30}
\therefore x=12^o.
\therefore \angle P =3x= 3\times 12^o=36^o,
\angle Q =5x=5\times 12^o =60^o,
\angle R =9x=9\times 12^o =108^o
and \angle S =13x=13 \times 12^o =156^o.
Hence, option A is correct.
Please disable the adBlock and continue. Thank you.