Explanation
Given ratio of angles of quadrilateral ABCD is 1:2:3:4
Let the angles of quadrilateral ABCD be 1x,2x,3x,4x, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o.
⇒1x+2x+3x+4x=360o
⇒10x=360o
∴x=36o.
∴∠A=1x=1×36o=36o,
∠B=2x=2×36o=72o,
∠C=3x=3×36o=108o
and ∠D=4x=4×36o=144o.
∴ The smallest angle =36o.
Hence, option C is correct.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o. The given angles are obtuse.
Let the angles be∠A=90o+a,∠B=90o+b,∠C=90o+c,∠D=90o+d.
Then, ∠A+∠B+∠C+∠D
=90o+a+90o+b+90o+c+90o+d
=360o+a+b+c+d>360o.
Therefore, all the four angles of a quadrilateral cannot be obtuse.
That is, the statement is false.
Given ratio of angles of quadrilateral PQRS is 1:2:3:4
Let the angles of quadrilateral PQRS be 1x,2x,3x,4x, respectively.
⇒1x+2x+3x+4x=360o⇒10x=360o
∴∠P=1x=1×36o=36o,
∠Q=2x=2×36o=72o,
∠R=3x=3×36o=108o
and ∠S=4x=4×36o=144o.
∴ ∠S=144o.
Hence, option D is correct.
Let the four angles be ∠A,∠B,∠C and ∠D .
Given ∠A=47o,∠B=102o,∠C=111o .
∠A+∠B+∠C+∠D=360o.
Then, ∠D will be given by:
∠D=360o−∠A−∠B−∠C
⇒∠D=360o−47o−102o−111o
⇒∠D=360−260o
⇒∠D=100o.
The measure of fourth angle is 100o.
Please disable the adBlock and continue. Thank you.