CBSE Questions for Class 9 Maths Triangles Quiz 8 - MCQExams.com

If $$a, b, c$$ are sides of a triangle, then
  • $$\sqrt a + \sqrt b > \sqrt c $$
  • $$\left| {\sqrt a - \sqrt b } \right| > \sqrt c $$
  • $$\sqrt a + \sqrt b < \sqrt c $$
  • None of these
 Two sides of a triangle are 7 cm and 25 cm, then the number of all possible integral values of third side of the triangle is 
  • 11
  • 14
  • 12
  • 13
Which of the following pairs of triangle are congruent ?
  • $$\triangle ABC$$ and $$\triangle DEF$$ in which : BC = EF, AC = DF and $$\angle C=\angle F$$.
  • $$\triangle ABC$$ and $$\triangle PQR$$ in which : AB = PQ, BC = QR and $$\angle C=\angle R$$
  • $$\triangle ABC$$ and $$\triangle LMN$$ in which : $$\angle A=\angle L={ 90 }^{ \circ },AB=LM,\angle C={ 40 }^{ \circ }$$ and $$\angle M={ 50 }^{ \circ }$$
  • $$\triangle ABC$$ and $$\triangle DEF$$ in which : $$\angle B=\angle E={ 90 }^{ \circ }$$ and AC = DF
Take any pointy $$O$$ in the interior of a triangle $$PQR$$. Is
1414911_de4cc256f33b489baa3d4260054aa329.PNG
  • $$OP+OQ>PQ?$$
  • $$OQ+OR>QR?$$
  • $$OR+OP>RP?$$
  • All of the above.
If the sides of triangle are 4 cm and 6 cm then the third side cannot be ... cm.
  • 8
  • 10
  • 5
  • 8.5
If $$\Delta ABC\cong \Delta DEF$$ write the part of $$\Delta ABC$$ that correspond to
  • DE
  • $$\angle E$$
  • DF
  • EF
  • $$\angle F$$
AM is a median of a triangle ABC. Is $$AB+BC+CA>2 AM$$?
(Consider the sides of triangles $$\triangle ABM$$ and $$\triangle AMC$$.)
  • True
  • False
In $$\Delta ABC$$ $$AB<AC$$ Then...... holds good.
  • $$\angle A<\angle B$$
  • $$\angle B<\angle C$$
  • $$\angle C<\angle A$$
  • $$\angle C<\angle B$$
In a triangle ABC, AB=AC, BA is extended upto D, in such a manner that AC=AD is a circular measure of <BCD:
  • $$\dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{2 \pi}{3}$$
  • $$\dfrac{\pi}{2}$$
if ABC and DEF are congruent triangles such that $$\angle A={ 47 }^{ \circ  }\quad and\quad \angle E={ 83 }^{ \circ  },\quad then\quad \angle C=$$
  • $${ 100 }^{ \circ }$$
  • $${ 50 }^{ \circ }$$
  • $${ 90 }^{ \circ }$$
  • NONE OF THESE
In $$\triangle ABC$$, $$P$$ is a point on the side $$BC$$ then which of the following is correct.
1464618_df422f580dce4ea5b8b8423a99f14217.png
  • $$ AP<AB+BP$$
  • $$ AP<AC+PC$$
  • $$ AP<AB+BC$$
  • $$ AP> AB+BC$$
The sum of any two sides of a triangle is always
  • equal to the third side
  • less than
  • grater than or equal to the 3rd side
  • grater than
Given two right angled triangle ABC and PQR, such that $$<A=20^o, <Q=20^o$$ and $$AC=QP$$. Write the correspondence if triangles are congruent.
  • $$\Delta ABC\cong \Delta PQR$$
  • $$\Delta ABC\cong \Delta PRO$$
  • $$\Delta ABC\cong \Delta ROP$$
  • $$\Delta ABC\cong \Delta QRP$$
If one of the two equal sides of a triangle is 5 cm long. Then what can be the measure of the third side?
  • 8 cm
  • 14 cm
  • 12 cm
  • 16 cm
The sides of a triangle are three consecutive  natural numbers and its largest the smallest one then the sides of triangle are 
  • 3, 4, 5
  • 5, 6, 7
  • 4, 5, 6
  • 6, 7, 8
$$ \triangle APQ$$ is such that perpendicular bisector of side $$PQ$$ bisect it at $$M$$ and passes from vertex $$A$$. Then by using which of the following congruence rule it can be proved that $$  \triangle \mathrm{AMP} \cong \triangle \mathrm{AMQ} $$.
  • $$RHS$$
  • $$SSS$$
  • $$SAS$$
  • $$AAA$$
Given that $$\Delta ABC = \Delta FDE$$ and $$AB = 5 cm, \angle B = 40^{0}$$ and $$\angle A = 80^{0}$$ then which of the following relation is true?
  • $$DF=5cm,\angle F=60^{0}$$
  • $$DF=5cm,\angle E=60^{0}$$
  • $$DE=5cm,\angle E=60^{0}$$
  • $$DE=5cm,\angle D=40^{0}$$
In $$\triangle PQR$$, if $$\angle R\displaystyle>\angle Q$$, then
  • $$QR>PR$$
  • $$PQ>PR$$
  • $$PQ
  • $$QR
In a triangle, the difference of any two sides is ____ than the third side.
  • Smaller
  • Equal
  • Greater
  • None of these
ABC is an isosceles triangle with AB $$= $$AC and D is a point on BC such that  $$AD \perp BC$$ (Fig. 7.13). To prove that $$\angle BAD = \angle CAD,$$ a student proceeded as follows:

$$\Delta ABD$$ and $$ \Delta ACD,$$
AB $$=$$ AC (Given)
$$\angle B = \angle C$$   (because AB $$=$$ AC)
and $$\angle ADB = \angle ADC$$
Therefore, $$\Delta ABD \cong \Delta ACD (AAS)$$
So, $$\angle  BAD = \angle CAD (CPCT)$$
What is the defect in the above arguments?

78853_330861415ee64345b8ba219aaf8ae2ec.png
  • It is defective to use $$\angle ABD = \angle ACD$$ for proving this result.
  • It is defective to use $$\angle ADB = \angle ADC$$ for proving this result.
  • It is defective to use $$\angle BAD = \angle DCA$$ for proving this result.
  • Cannot be determined
Given $$\Delta OAP \cong  \Delta OBP$$ in figure, the criteria by which the triangles are congruent is:

85097_33d8e236f4ec4665aa7c0a2a618fd736.png
  • $$SAS$$
  • $$SSS$$
  • $$RHS$$
  • $$ASA$$
In $$\Delta ABC$$, if $$\angle A = 50^{\circ}$$ and $$\angle B = 60^{\circ}$$, then the greatest side is :
  • AB
  • BC
  • AC
  • Cannot say
The construction of a triangle ABC, given that BC = 3 cm is possible when difference of AB and AC is equal to :
  • 3.2 cm
  • 3.1 cm
  • 3 cm
  • 2.8 cm
In $$\Delta PQR,$$ if $$\angle R > \angle Q,$$ then:
  • $$QR > PR$$
  • $$PQ > PR$$
  • $$PQ < PR$$
  • $$QR < PR$$
In $$\Delta ABC$$ and $$\Delta DEF$$, AB = DF and $$\angle A = \angle D$$. The two triangles will be congruent by SAS axiom if :
  • BC = EF
  • AC = DE
  • BC = DE
  • AC = EF
In triangles ABC and DEF, AB $$=$$ FD and $$\angle A = \angle D$$. The two triangles will be congruent by
SAS axiom if :
  • BC $$=$$ EF
  • AC $$=$$ DE
  • AC $$=$$ EF
  • BC $$=$$ DE
In $$\Delta ABC, \angle B = 30^{\circ}, \angle C = 80^{\circ}$$ and $$\angle A = 70^{\circ}$$ then,
  • $$AB > BC < AC$$
  • $$AB < BC > AC$$
  • $$AB > BC > AC$$
  • $$AB < BC < AC$$
If $$\Delta ABC \cong \Delta DEF$$ by SSS congruence rule then :
  • $$AB=EF, BC=FD, CA=DE$$
  • $$AB=FD, BC=DE, CA=EF$$
  • $$AB=DE, BC=EF, CA=FD$$
  • $$AB=DE, BC=EF, \angle C=\angle F$$
In the given figure , which of the following statement is true ?

84961_a662a58500dd49edab40eb554ee9e355.png
  • $$\angle B=\angle C$$
  • $$\angle B$$ is the greatest angle in triangle
  • $$\angle B$$ is the smallest angle in triangle
  • $$\angle A$$ is the smallest angle in triangle
If $$\Delta ABC \cong  \Delta DEF$$ by SSS congruence rule then
  • $$AB=EF,BC=FD,CA=DE$$
  • $$AB=FD,BC=DE,CA=EF$$
  • $$AB=DE,BC=EF,CA=FD$$
  • $$AB=DE,BC=EF,\angle C = \angle F$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers