Explanation
$${g^1} = g\left( {1 - {h \over R}} \right)$$
$$g = g\left( {1 - {h \over R}} \right)$$
$$1 = {h \over R},h = R$$
Given,
Radius of rotation become double, $${{a}_{2}}=2{{a}_{1}}$$
By Kepler’s law, $$T ^ { 2 }$$$$\alpha \,\,{{a}^{3}}$$
$$\dfrac { T _ { 1 } ^ { 2 } } { a _ { 1 } ^ { 3 } }$$$$= \dfrac { T _ { 2 } ^ { 2 } } { a _ { 2 } ^ { 3 } }$$
$$T _ { 2 } ^ { 2 }$$$$= \left( \dfrac { a _ { 2 } } { a _ { 1 } } \right) ^ { 3 } \times T _ { 1 } ^ { 2 }$$
$$T _ { 2 } ^ { 2 }$$ $$={{\left( \dfrac{2}{1} \right)}^{3}}\times T_{1}^{2}$$
$$T _ { 2 } ^ { 2 }$$ $$=8\times T_{1}^{2}$$
$$T _ { 2 } ^ { 2 }$$ $$=\sqrt{8}\times 365\text{ days }$$
$${{T}_{2}}=1032.37\text{ days }$$
Hence, $$1032$$ days in year.
Please disable the adBlock and continue. Thank you.