Explanation
Acceleration due to gravity at a depth h below the surface of earth is
gd=g(1−hR)
Acceleration due to gravity at a height h above the surface of earth is
gh=g(1−2hR)
where, g is the acceleration due to gravity on the surface and R is the radius of earth.
So, gdgh=(R−h)(R−2h)
Since R>>h
We can conclude that this ratio is constant.
Escape speed is, ve=√2gR ∴ It is given, \dfrac {R_1}{R_2}=K_1 and \dfrac {g_1}{g_2}=K_2 \Rightarrow \dfrac {v_1}{v_2}=\sqrt {K_1K_2}
Gravitational potential energy on the earth surface, U_{r}=\displaystyle \dfrac{-GMm}{R}
Gravitational potential energy at a height h above the earth's surface, U_{h}=\displaystyle \dfrac{-GMm}{R+h}
U_{h}=\displaystyle \dfrac{-GMm}{R+R}=\dfrac{-GMm}{2R}
Gain in gravitational potential energy =U_{h}-U_{r}
=\displaystyle \dfrac{-GMm}{2R}-(\dfrac{-GMm}{R})=\dfrac{GMm}{R}-\dfrac{GMm}{2R}
=\displaystyle \dfrac{GMm}{2R}=\dfrac{1}{2}mgR
Given that,
Mass of satellite =m
Mass of planet =M
Radius =R
Altitude h=2R
Now,
The gravitational potential energy
P.E=\dfrac{-Gm}{r}
Potential energy at altitude =\dfrac{GmM}{3R}
Orbital velocity {{v}_{0}}=\sqrt{\dfrac{2GmM}{R+h}}
Now, the total energy is
{{E}_{f}}=\dfrac{1}{2}mv_{0}^{2}-\dfrac{GmM}{3R}
{{E}_{f}}=\dfrac{1}{2}\dfrac{GmM}{3R}-\dfrac{GMm}{3R}
{{E}_{f}}=\dfrac{GmM}{3R}\left[ \dfrac{1}{2}-1 \right]
{{E}_{f}}=\dfrac{-GmM}{6R}
Now, {{E}_{i}}={{E}_{f}}
Now, the minimum required energy
K.E=\dfrac{Gmm}{R}-\dfrac{GmM}{6R}
K.E=\dfrac{5GmM}{6R}
Hence, the minimum required energy is \dfrac{5GmM}{6R}
g'=g\left( 1-\dfrac{2h}{R} \right)
g'=g\left( 1-\dfrac{h}{R} \right)
\bullet Therefore, the value of acceleration due to gravity is maximum at the surface of Earth.
Thus, the weight of the body ( W=mg ) is maximum at the surface of Earth.
Please disable the adBlock and continue. Thank you.