Explanation
Acceleration due to gravity at a depth $$h$$ below the surface of earth is
$$g_d = g(1 - \dfrac{h}{R})$$
Acceleration due to gravity at a height $$h$$ above the surface of earth is
$$g_h = g(1- \dfrac{2h}{R})$$
where, $$g$$ is the acceleration due to gravity on the surface and $$R$$ is the radius of earth.
So, $$\dfrac{g_d}{g_h} = \dfrac{(R - h)}{ (R - 2h)}$$
Since $$R>> h$$
We can conclude that this ratio is constant.
Escape speed is, $$v_e=\sqrt {2gR}$$ $$\therefore \dfrac {v_1}{v_2}=\sqrt{\dfrac {g_1R_1}{g_2R_2}}$$ It is given, $$\dfrac {R_1}{R_2}=K_1$$ and $$\dfrac {g_1}{g_2}=K_2$$ $$\Rightarrow \dfrac {v_1}{v_2}=\sqrt {K_1K_2}$$
Gravitational potential energy on the earth surface, $$U_{r}=\displaystyle \dfrac{-GMm}{R}$$
Gravitational potential energy at a height h above the earth's surface, $$U_{h}=\displaystyle \dfrac{-GMm}{R+h}$$
$$ U_{h}=\displaystyle \dfrac{-GMm}{R+R}=\dfrac{-GMm}{2R}$$
Gain in gravitational potential energy $$=U_{h}-U_{r}$$
$$=\displaystyle \dfrac{-GMm}{2R}-(\dfrac{-GMm}{R})=\dfrac{GMm}{R}-\dfrac{GMm}{2R}$$
$$=\displaystyle \dfrac{GMm}{2R}=\dfrac{1}{2}mgR$$
Given that,
Mass of satellite $$=m$$
Mass of planet $$=M$$
Radius $$=R$$
Altitude $$h=2R$$
Now,
The gravitational potential energy
$$P.E=\dfrac{-Gm}{r}$$
Potential energy at altitude $$=\dfrac{GmM}{3R}$$
Orbital velocity $${{v}_{0}}=\sqrt{\dfrac{2GmM}{R+h}}$$
Now, the total energy is
$$ {{E}_{f}}=\dfrac{1}{2}mv_{0}^{2}-\dfrac{GmM}{3R} $$
$$ {{E}_{f}}=\dfrac{1}{2}\dfrac{GmM}{3R}-\dfrac{GMm}{3R} $$
$$ {{E}_{f}}=\dfrac{GmM}{3R}\left[ \dfrac{1}{2}-1 \right] $$
$$ {{E}_{f}}=\dfrac{-GmM}{6R} $$
Now, $${{E}_{i}}={{E}_{f}}$$
Now, the minimum required energy
$$ K.E=\dfrac{Gmm}{R}-\dfrac{GmM}{6R} $$
$$ K.E=\dfrac{5GmM}{6R} $$
Hence, the minimum required energy is $$\dfrac{5GmM}{6R}$$
$$g'=g\left( 1-\dfrac{2h}{R} \right)$$
$$g'=g\left( 1-\dfrac{h}{R} \right)$$
$$\bullet$$ Therefore, the value of acceleration due to gravity is maximum at the surface of Earth.
Thus, the weight of the body $$( W=mg )$$ is maximum at the surface of Earth.
Please disable the adBlock and continue. Thank you.