In fig, $$ABC$$ and $$BDE$$ are two equilateral triangles such that $$D$$ is the mid-point of $$BC$$. If $$AE$$ intersects $$BC$$ at $$F$$, show that:
(i) $$ar(BDE) = \dfrac {1}{4} ar(ABC)$$
(ii) $$ar(BDE) = \dfrac {1}{2} ar(BAE)$$
(iii) $$ar(ABC) = 2ar (BEC)$$
(iv) $$ar(BFE) = ar(AFD)$$
(v) $$ar(BFE) = 2 ar(FED)$$
(vi) $$ar(FED) = \dfrac {1}{8} ar(AFC)$$