Determinants - Class 12 Engineering Maths - Extra Questions
Find the value of determinant $$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$$.
Find the Adjoint matrix of the matrix $$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{vmatrix}$$
If $$\omega$$ is one of the imaginary cube roots of unity, find the value of $$\begin{vmatrix}1 & \omega^{3} & \omega^{2}\\ \omega^{3} & 1 &\omega \\ \omega^{2} & \omega & 1\end{vmatrix}$$.
Find the relation between $$a$$ and $$b$$. If the points $$P(1,2),Q(0,0)$$ and $$P(a,b)$$ are collinear
If the matrix $$A$$ = $$\left[ {\begin{array}{*{20}{c}}6 & x & 2\\2 & { - 1} & 2\\{ - 10} & 5 & 2\end{array}} \right]$$is a singular matrix. Find the value of x.
Find $$'x'$$ if $$\left| {\begin{array}{*{20}{c}}4&x&6\\2&3&4\\1&1&1\end{array}} \right| = 10$$
Show $$\begin{vmatrix} ax & by & cz\\ x^2 & y^2 & z^2\\ 1 & 1 & 1 \end{vmatrix}=\begin{vmatrix} a & b & c\\ x & y & z\\ yz & zx & xy \end{vmatrix}$$
For a fixed positive integer n, if $$D=\begin{vmatrix} n! & (n+1)! & (n+2)!\\ (n+1)! & (n+2)! & (n+3)!\\ (n+2)! & (n+3)! & (n+4)! \end{vmatrix}$$ then show
$$\left [\frac {D}{(n!)^3}-4\right ]$$ is divisible by n.
If $$u=ax^2+2bxy+cy^2, u'=a'x^2+2b'xy+c'y^2$$, then prove that $$\begin{vmatrix} y^2 & -xy & x^2\\ a & b & c\\ a' & b' & c' \end{vmatrix}=\begin{vmatrix} ax+by & bx+cy\\ a'x+b'y & b'x+c'y \end{vmatrix}=-\frac {1}{y}\begin{vmatrix} u & u'\\ ax+by & a'x+b'y \end{vmatrix}$$
If $$\omega$$ is one of the imaginary cube roots of unity, find the value of $$\begin{vmatrix}1 & \omega & \omega^{2}\\ \omega & \omega^{2} & 1\\ \omega^{2} & 1 & \omega\end{vmatrix}$$.
Prove the following : $$\left| \begin{matrix} 2ab & a^{ 2 } & { b }^{ 2 } \\ a^{ 2 } & { b }^{ 2 } & 2ab \\ { b }^{ 2 } & 2ab & a^{ 2 } \end{matrix} \right| =-{ \left( { a }^{ 3 }+{ b }^{ 3 } \right) }^{ 2 }.$$
Let A be the matrix of order $$ 3 \times 3$$ such that $$|A| = 1,$$ $$B = 2A^{-1}$$ and $$C = \frac{(adj A)}{\sqrt[3]{2}}$$, then the value of $$|AB^2 . C^3|$$ is [Note : |A| represent determinant value of matrix A.]
Prove the following : $$\left| \begin{matrix} \dfrac { { a }^{ 2 }+{ b }^{ 2 } }{ c } & c & c \\ a & \dfrac { { b }^{ 2 }+{ c }^{ 2 } }{ a } & a \\ b & b & \dfrac { { c }^{ 2 }+{ a }^{ 2 } }{ b } \end{matrix} \right| =4abc$$
If A = $$\begin{bmatrix} a \\[0.3em] b \\[0.3em] -a \end{bmatrix}_{3\times1} \begin{bmatrix} a & b & -a \\[0.3em] \end{bmatrix}_{1\times3}$$ then find wheather $$A^{-1}$$ exists or not.
Solve: $$\begin{vmatrix}x & x^2 & yz\\ y & y^2 & zx\\ z & z^2 & xy\end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)$$.
Find the value of $$x$$ for which the determinant $$\left| {\begin{array}{*{20}{c}}{2x - 3}&{x - 2}&{x - 1}\\{x - 2}&{2x - 2}&x\\{x - 1}&x&{2x - 1}\end{array}} \right|$$ vanishes if
$$ \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
$$\text { Prove that: }\left|\begin{array}{ccc}a+b+2 c & a & b \\c & b+c+2 a & b \\c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}\\$$
If the point $$(x,y),(a,0),0,b)$$ are collinear, prove that $$\cfrac { x }{ a } +\cfrac { y }{ b } =1$$
If $$D_r=\begin{vmatrix} 2^{r-1} & 2(3^{r-1}) & 4(5^{r-1})\\ x & y & z\\ 2^n-1 & 3^n-1 & 5^n-1 \end{vmatrix}$$ then prove that $$\displaystyle \sum_{r=1}^nD_r=0$$
The trace of a square matrix is defined to be the sum of its diagonal entries. If $$A$$ is a $$2 \times 2$$ matrix such that the trace of $$A $$ is $$3$$ and the trace of $$A^3$$ is $$-18$$, then the value of the determinant of $$A$$ is ______.