Integrals - Class 12 Engineering Maths - Extra Questions
The value of the definite integral, I=∫√100xex2dx is equal to
∫2π0cos5xdx
Write the value of ∫1−sinxcos2xdx
√2∫2π0√1−sinxdx=
Prove that: ∫π0xdx1+sinx=π
Evaluate the following definite integral:
∫124xdx
Evaluate the following definite integral:
∫π/20sinxcosxdx
Evaluate the following definate integral:
∫203x+2dx
∫10dx(1+x)√(2+x−x2)=1k√2. Find the value of k.
Integrate ∫10sin−1(2x1+x2)dx
Evaluate: ∫10x4(1−x)41+x2dx
∫10cot−1(1+x2−x)dx.
Prove that ∫tanx1/et1+t2dt+∫cotx1/e1t(1+t2)dt=1.
Evaluate: ∫π/40sinx+cosx9+16sin2xdx
Evaluate: 0∫21√4−x2dx
EVALUATE ∫321x+5dx
Evaluate the definite integral:
∫101−x2(1+x2)2dx
Evaluate: ∫12x+3dx
Evaluate the following integrals: ∫√2x2+3x+4dx
Evaluate the following integral: ∫(x+1)√2x2+3dx
Evaluate the following integrals: ∫√2ax−x2dx
Evaluate the following definite integral:
∫π/40sin32tcos2tdt.
Evaluate the following integral: ∫20x√2−xdx.
Evaluate the following integral: ∫90dx(1+√x).
Evaluate the following integral: ∫32(2−x)√5x−6−x2dx.
Evaluate the following integral: ∫a0x√a2+x2dx.
Evaluate the following integral: ∫21dx(x+1)√x2−1.
Evaluate the following integral: ∫10x3√1+3x4dx.
Evaluate the following integral: ∫a0x4√a2−x2dx.
Evaluate the following integral: ∫10(1−x2)(1+x2)2dx.
Prove that ∫41√x(√5−x+√x)dx=32.
Prove that ∫10x(1−x)5dx=142.
Prove that ∫∞0x(1+x)(1+x2)dx=π4.
Prove that ∫3a/4a/4√x(√a−x+√x)dx=a4.
Prove that ∫80|x−5|dx=17.
Prove that ∫a0√x(√x+√a−x)dx=a2.
Prove that ∫a0dxx+√a2−x2=π4.
Prove that ∫20x√2−xdx=16√215.
Prove that ∫2−2|x+1|dx=5.
The value of the integral 9999∫∞0dx(x+√1+x2)100 is
Let I=∫10dx√4−x2−x3 and I1=∫1/20dx√1−x4
Find : ∫π20dx4+5cosxdx
∫π/40(sinx+cosx)9+16sin2xdx
∫21x√2x2+1dx
Evaluate: ∫√31dx1+x2
Evaluate: ∫π20sinx⋅cosx1+sin4x⋅dx.
If the value of the definite integral\int_{0}^{207} C_{7} x^{200} \cdot(1-x)^{7} d x is equal to \dfrac{1}{k} where k \in N\\, thenthe value of k / 26 is