Processing math: 0%

Introduction To Trigonometry - Class 10 Maths - Extra Questions

Find value of 10x
197446_0d38e09eb8cb4f028abd28c057592949.png



Value of 100x is 3464,
197449_51f9dd7bee3445c5b9f177861f88c55c.png



From the given figure, find the value of m if,  tan C is m4.
195970_a315106031ef4f4bad6a3ab8e745ba21.png



\displaystyle\,\frac{1\,-\,cos\,2\,A}{sin\,2\,A}\,=\,tan\,2A

If above statement is true then mention answer as 1, else mention 0 if false



Find side c of the triangle ABC, given that \displaystyle A=30^{0},B=60^{0} and \displaystyle b=20\sqrt{3}
376970.png



If 2\cos { \theta  } =1 and \theta is acute angle, then what is  \theta equal to?



Find the value of the following:
\tan ^{ 2 }{ { 60 }^{ o } } +2\tan ^{ 2 }{ { 45 }^{ o } }



Prove that \cos { \theta  } \cdot cosec \ { \theta  } =\cot { \theta  }



Find the value of \sin ^{ 2 }{ { 45 }^{ o } } +\cos ^{ 2 }{ { 45 }^{ o } } .



Find the value of { \left( \sin { \theta  } +\cos { \theta  }  \right)  }^{ 2 }+{ \left( \sin { \theta  } -\cos { \theta  }  \right)  }^{ 2 }



If \cos{\theta}=1, then find the value of acute angle \theta.



\sin{\left({60}^{\circ}+{30}^{\circ}\right)}= _______.



(1 + \tan A \cdot \tan B)^{2} + (\tan A - \tan B)^{2} = \sec^{2}A \cdot \sec^{2}B.



Find the value of \sin^{2}30^{\circ} + \cos^{2} 60^{\circ}



Prove that  \sin^2A  + \dfrac{1}{1  + \tan^2A} =  1.



Prove that (1  + \cot^2A) \sin^2A = 1.



Prove the following :
(iv) \dfrac{\cos(90^{\circ} \, - \, A) \sin (90^{\circ} \, - \, A)}{\tan(90^{\circ} \, - \, A)} = \, \sin^2 \, A



Prove that cosec  \theta \sqrt{1 - \cos^2 \theta} = 1.



Evaluate the following :
\dfrac{cos 37^{\circ}}{sin 53^{\circ}}



Evaluate the following :
\dfrac{\tan 10}{\cot 80}



Evaluate the following :

\dfrac{\sec 11}{\text{cosec} 79}



Prove that  (\sec \theta  + \cos \theta) (\sec \theta - \cos \theta) = \tan^2 \theta  +  \sin^2\theta.



Prove that  (\sec^2\theta  - 1) (co\sec^2\theta - 1) = 1



Evaluate the following :
\dfrac{tan 54^{\circ}}{cot 36^{\circ}}



Evaluate the following:

\dfrac{2 \tan 53^{\circ}}{\cot 37^{\circ}} \, - \, \dfrac{\cot 80^{\circ}}{\tan 10^{\circ}}



Verify  that \cot ^{ 2 }{ {60}^{o} } +\sin ^{ 2 }{ {45}^{o} } +\sin ^{ 2 }{ {30}^{o} } +\cos ^{ 2 }{ {90}^{o} } =\dfrac { 13 }{ 12 }



If \tan { \theta  } =\dfrac { 20 }{ 21 }, then prove that \dfrac { 1-\sin { \theta  } +\cos { \theta  }  }{ 1+\sin { \theta  } +\cos { \theta  }  } =\dfrac { 3 }{ 7 }



Express each of the following in trigonometric ratios of angles between 0^{\circ} \, and \, 45^{\circ} :
sin 85^{\circ} \, + \, cosec 85^{\circ}



{ \left( \tan { x } +\cot { x }  \right)  }^{ 2 }=\sec ^{ 2 }{ x+\csc ^{ 2 }{ x }  }



Prove that:\dfrac{1+\sec A}{\sec A}=\dfrac{\sin^2 A}{1-\cos\,A}



Calculate : { \left( \cos { 40 }  \right)  }^{ 2 }+{ \left( \sin { 40 }  \right)  }^{ 2 }



Prove that \dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}



Prove that: \dfrac{1}{\sec A-1}+\dfrac{1}{\sec A+1}=2 \csc A \cot A



Prove that \dfrac {1+\cos \theta}{\sin^{2}\theta}=\dfrac {1}{1-\cos \theta}



Evaluate
\dfrac{tan 45^o}{cosec 30^o} + \dfrac{sec 60^o}{cot 45^o} - \dfrac{5 sin 90^o}{2 cos 0^o}



Evaluate : \sin^{2}90.\cos^{2} 45+4 \tan^{2}30+\dfrac {1}{2}\sin^{2}a-2 \cos^{2}90+\dfrac {1}{24}



Simplify:
\dfrac {\sin \theta.\csc (90-\theta).\tan \theta}{\csc (90-\theta).\cos \theta.\cot (90-\theta)}



For any angle of measure \theta 
prove that 1+\tan^2\theta =\sec^2\theta.



Find the value of \dfrac{\cos 30^o \tan 60^o + \sin 60^o \cos 60^o}{cosec \,30^o \sec 60^o - cosec \,60^o \cot 30^o}



Prove that: \sqrt {\sec^{2}A+\csc^{2}A}=\tan A+\cot A



If A = 15^o, verify that 4 \sin 2 A . \cos 4 A . \sin 6 A = 1



Evaluate
\sin^{2}\theta(\tan^{2}\theta+1)=\sec^{2}\theta-1



Evaluate
\tan\theta.\sin\theta+\cos\theta=\sec\theta



Simplify: \dfrac{{{\text{sec}}{{\text { x}}^{\text{}}}{\text{ + tan}}{{\text{ x}}^{\text{}}}}}{{{\text{sec}}{{\text{ x}}^{\text{}}}{\text{ - tan}}{{\text { x}}^{\text{}}}}}



In the figure, find the value of BC
1203463_4010b95ffe23422aa7207d352257f251.png



Solve \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\mathop{\rm cosec}\nolimits} {{30}^ \circ }}}



Find value of:
3\cos ^{ 2 }{ { 30 }^{ o } } +\sec ^{ 2 }{ { 30 }^{ o } } +2\cos ^{ 2 }{ { 0 }^{ o } } +3\sin ^{ 2 }{ { 90 }^{ o } } -\tan ^{ 2 }{ { 60 }^{ o } }



Evaluate: \dfrac{\cos\ 3A-2\cos(4A)}{\sin\ 3A+2\sin(4A)}; when A=15^{o}



Solve:-
\dfrac{{2\tan {{45}^ \circ }}}{{1 + {{\tan }^2}{{45}^ \circ }}}



Prove that \cos \theta \sin(90^o-\theta)+\sin \theta \cos(90^o-\theta)=1



Without using trigonometric tables, evaluate the following: \left ( \sin 35^{0}\cos 55^{0}+\cos 35^{0}\sin 55^{0} \right )/\left ( cosec^{2}10^{0}-\tan ^{2}80^{0} \right ).



Prove that following identities, where the angles involved are acute angles for which the trigonometric ratios as defined: \left ( 1+\tan ^{2}A \right )\left ( 1-\sin A \right )\left ( 1+\sin A \right )=1.



Verify that
\tan^{2} 30^{\circ} + \tan^{2} 45^{\circ} + \tan^{2} 60^{\circ} = 4\dfrac {1}{3}.



A 15 m long ladder touches the top of vertical wall. If this ladder makes an angle of 60^{0} with the wall, then height of the wall is :



Prove that following identities, where the angles involved are acute angles for which the trigonometric ratios as defined: 1/\left ( 1+\cos A \right )+1/\left ( 1-\cos A \right )=2cosec^{2}A.



Verify that
\cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ} = -\dfrac {\sqrt {3} - 1}{2\sqrt {2}}.



Verify that
cosec^{2} 45^{\circ} \cdot \sec^{2} 30^{\circ} \cdot \sin^{3} 90^{\circ} \cdot \cos 60^{\circ} = 1\dfrac {1}{3}.



Find the value of \cfrac{\tan 47^{0}}{\cot 43^{0}}



Simplify: (1 + \tan^{2} \theta) (1 - \sin \theta) (1 + \sin \theta).



State true or false:
\sin^2A+ \cos^2A= 1



If \sin A, \cos A and \tan A are in geometric progression, then \cot^6A-\cot^2A=........



\tan 30^{\circ} \: \cot 30^{\circ}=



\text{cosec}\, ^{2} 60^{0}-\tan ^{2} 30^{0}=



If the angle \theta = 60^{\circ} and \displaystyle cos \theta = \frac{1}{2}, find the value of sec \theta.



Find the value of : \displaystyle \dfrac{2 \tan 53^o}{\cot 37^o} - \dfrac{\cot 80^o}{\tan 10^o}



If \displaystyle \sin \theta = \cfrac{\sqrt{2}}{3}, \cos \theta = \cfrac{1}{3}, then \displaystyle \tan \theta = \sqrt{m}. The value of m is



If \displaystyle tan \theta = \frac{2}{5}, then \displaystyle cot \theta = \frac{p}{2}, p is



If \tan 2A = \cot (A - 18^o) then find the value of A where (2A) and (A - 18^o) are acute angles



The value of \displaystyle \left ( \dfrac{\tan 60^{0}+1}{\tan 60^{0}-1} \right )^{2}= \dfrac{1+\cos 30^{0}}{1-\cos 30^{0}}

if true then enter 1 and if false then write 0



The value of \displaystyle \tan \left ( 2 \times  30^{0}\right )= \frac{2 \tan 30^{0}}{1-\tan ^{2} 30^{0}}

if true then enter 1 and if false then write 0



The value of \cos ^{2} 30^{0}-\sin ^{2} 30^{0}= \cos 60^o
If above statement is true then enter 1 and if false then write 0.



\sin ^{2} 30^{0}+\cos ^{2} 30^{0}



The value of \cos 30^{\circ}  \cos 60^{\circ}-\sin 30^{\circ}  \sin 60^{\circ} is equal to



ABC is an isosceles right-angled triangle. Assuming AB= BC= x, find the value of each of the following trigonometric ratios:
\sin 45^{0} is \displaystyle \frac{1}{\sqrt{2}}
If true then enter 1 and if false then enter 0

184308.jpg



Find the value of \text{cosec}^{2} 45^{o}-\cot^{2} 45^{o}.



The value of \displaystyle \cos \left ( 2 \times  30^{0}\right )= \frac{1-\tan ^{2} 30^{0}}{1+\tan ^{2} 30^{0}}

If true then enter 1 and if false then write 0



The value of \displaystyle \sin \left ( 2 \times  30^{0}\right )= \frac{2\tan 30^{0}}{1+\tan ^{2} 30^{0}}

if true then enter 1 and if false then write 0



If A= 30^{0}, then the value of
\sin \left ( 60^{0}+A \right )-\sin \left ( 60^{0}-A \right )= \sin A
If true then enter 1 and if false then write 0



If \tan \theta= \cot \theta and 0^{0}\leq \theta \leq 90^{0}, state the value of \theta in degrees



The value of \sin 60^{0}=2 \sin 30^{0} \cos 30^{0}

if true then enter 1 and if false then write 0



If \sqrt{3}= 1.732, (correct to two decimal places) the value of \sin 60^{0} is 0.87.
If true then enter 1 and if false then enter 0.



If x= 15^{0}, evaluate:
\displaystyle 12 \sin 3x \cos 3x+5 \tan ( 2x+ 15^{0})-3 \cot ^{2}3x



If \sin x= \cos x and x is acute, state the value of x in degrees.



If A= 60^{0} and B= 30^{0}, find the value of \left ( \sin A \cos B+ \cos A\sin B \right )^{2}+\left ( \cos A \cos B-\sin A \sin B \right )^{2}



If x= 15^{0}, evaluate:
4 \cos 2x \sin 4x\tan 3x-1



If \sqrt{3}= 1.732, find (correct to two decimal places) the value of the following:

\displaystyle \dfrac{2}{\tan 30^{0}} is 3.46

If true then enter 1 and if false then enter 0



If A= 30^{0}, then
\displaystyle \cos 2A= \cos ^{2} A-\sin ^{2} A= \dfrac{1-\tan ^{2}A}{1+\tan ^{2}A}
If true enter 1 else 0



Given A= 60^{0} and B= 30^{0}, then
\displaystyle \tan \left ( A-B \right )= \dfrac{\tan A-\tan B}{1+\tan A \tan B}
If true enter 1 else 0



If A= 30^{0}then 
2\cos ^{2} A-1= 1-2\sin ^{2}A
If true enter 1 else 0



If A=B= 45^{0}, then 
\sin \left ( A-B \right )=\sin A \cos B-\cos A \sin B
If true enter 1 else 0



Solve: \sec 4A = \csc (A-20^{\circ})



\displaystyle \cos  ^2\ 10^{\circ}-\sin^2 80+\tan ^2 45^{\circ}



State true or false

Given A= 60^{0} and B= 30^{0}, then
\sin \left ( A+B \right )= \sin A\cos B+\cos A\sin B
If true enter 1 else 0



Find the value of: \displaystyle \sqrt{\frac{1-\sin ^{2}60^{0}}{1-\cos ^{2}60^{0}}} is \displaystyle \frac{1}{\sqrt{m}}, m is



Given A= 60^{0} and B= 30^{0}, then
\cos \left ( A-B \right )= \cos A\cos B+\sin A\sin B
If true or false:



If A= 60^{0} and B= 30^{0}
\displaystyle \frac{\sin \left ( A-B \right )}{\sin A \sin B}= \cot B-\cot A
If true enter 1 else 0



Refer to the triangle given in figure.
\sec C is \displaystyle \frac{3\sqrt{2}}{m}, m is

185854_5bf0378e0fc74f668e5a7eee5e821058.png



Consider the following figure:

\sin B is \displaystyle \frac{12}{m}, m is 

185867_227b8b0385d64896bd5393746d641fe9.png



\displaystyle 3-\sin ^2 48^{\circ}+\cos ^2 42^{\circ}



Consider the following figure:

\tan C is \displaystyle \frac{m}{4}, m is 

185870_d116b7ac29414852a026b02b054614a1.png



Refer to the triangle given in the figure.

If \cos A is equal to \displaystyle \frac{m}{5}, find m.

185834_8bd47d49aaed4c339e31665733193994.png



If \cos A is \displaystyle \frac{3}{m}, then m is

185768_c66d04b4216f43d699a65619952522fa.png



From the following figure, find the values of:

\sec ^{2}B\, -\, \tan ^{2}B


185874_4c56cb39f881418abff1658cf5528b19.png



If \sin C is \displaystyle \frac{1}{m}, then m is: 

185848_0dd06bf2a9c14d2683c4971fea170121.png



Refer to the triangle given in figure.
If cosec\: A is \displaystyle \cfrac{5}{m}, then m is: 

185835_9e7738c289e641fa97f55fcdd1820fa3.png



Also find the value of : \sin B\cdot \cos C\, +\, \cos B\cdot \sin C.

185827_b055e03c7a3943b99b9af9164159ac04.png



From the figure, \sin x^{0} is \displaystyle \frac{\sqrt{m}}{2}. The value of m is:

186556_3b8656e6cfb04f1e96d6e7aa8b8727a2.png



In triangle ABC, AD is perpendicular to BC. \sin B= 0.8, BD = 9 cm and \tan C= 1. Find the length of AB



In triangle ABC, AB= AC= 15 cm and BC= 18 cm. Find :

m if \sin C is \displaystyle \dfrac{4}{m}



Find the length of AD. If \angle ABC = 60^{\circ},\ \angle DBC = 45^{\circ} and BC = 40\ cm.
187459_63eb442c6a9144969b4c5fae43aeddb9.png



From the following figure, find the value of:

\sin  ^{2}C\, +\, \cos  ^{2}C


185878_ffcf3eb26955455ca239ceb54810f438.png



From the following figure, find the value of:
\cos ^{2}A\, +\, \sin ^{2}A


185907_38fc602d7f054ba2925c58ed1442039d.png



Find AB, if:
187657_f7f5ca5a802240faa193cd49dc7f6393.png



Find AC
187641.bmp



Find AB 
187675_9d939e65fc0c41bbaa7940e70330895e.png



The value of BC in the closest integer (in cm.) is:
187638_7432864673bb405ea13e922b699dda4d.png



Find \space BC \space and \space AB

187663_94b812147c034210b102a6d55da66a1d.png



Find PQ, if \displaystyle AB = 150\ m, \angle P = 30^{\circ} and \displaystyle \angle Q = 45^{\circ}
187684_d139df01fb1b4814ba5ec703fadfbc37.png



From the given figure, find the value of m, if  cos A =\displaystyle \dfrac{3}{m}
195961_3bdb5023e54a454992f6ce2299eb1fe4.png



If \tan x^{\circ} = \dfrac {5}{12}, \tan y^{\circ} = \dfrac {3}{4} and AB = 48\ m; find the length of CD.
187689_a3d1aa309326494c8b7347b8d1afa96f.png




From the given figure, find the value of \sin^{2}B\, +\, \cos^{2}B
195981_cdb5ab4ca11e402b94bbf153d7d15e15.png



In the following figure; angle \displaystyle B=90^{\circ},\angle ADB=30^{\circ} and \displaystyle \angle ACB=60^{\circ}.
If \displaystyle CD = 40\ m, then AB is 34.64 m
If true then enter 1 and if false then enter 0

187696.bmp



cos A is \displaystyle \frac{12}{m}, m is



sin A is \displaystyle \frac{m}{13}, m is




From the given figure, find the value of sin B.cos C + cos B.sin C
195982_eb3310e6a6b34f49b8935ea1fe1a27df.png



sin B is \displaystyle \frac{m}{5}, m is
196340_ee1926eef3584f74bb268b2f1088b34f.png



In triangle ABC, AD is perpendicular to BC.If \sin B = 0.8, BD = 9 cm and \tan C = 1. Find the length of AB



If \sin\, 30^{\circ}\, \cos\, 30^{\circ} is \displaystyle \dfrac{\sqrt{3}}{m}, then m is:



If 3 \tan A - 5 \cos B = \sqrt{3} and B = 90^{\circ}, find the value of A in degrees.



 AB is 17.32 cm
If true then enter 1 and if false then enter 0

197613_f5f233953e294a4dbf3d5768fa7a3566.png



Find PQ, if AB = 150 m, \angle P\, =\, 30^{\circ}\, and\, \angle Q\, =\, 45^{\circ}

197632_531040cf5a6b430e9702a1bd694cf8f7.png



Ab is 47.32 cm
If true then enter 1 and if false then enter 0

197621_e7e3eceebb2441ada15b5fc706270513.png



\cos^{2}\, 10^{\circ}\, -\, \sin^{2}\, 80^{\circ}\, +\, \tan^{2}\, 45^{\circ} 



AB is 27.32 cm
If true then enter 1 and if false then enter 0

197607_6a4f59adfb5645cf907be2a90d745ba9.png



sin\,x^{\circ} is \displaystyle\,\frac{\sqrt{3}}{m}
value of m is 



The value of x is m\sqrt{2}, so m is equal to:
197582_19c26e65ff734f8b8a3423dd1a36f099.png



Use cos\,x^{\circ} to find the value of y.



If \sec A \tan B+\tan A \sec B=91, then the value of (\sec A \sec B+\tan A \tan B)^2 is equal to



If \displaystyle \cos \theta =\frac{3}{4} then the value of \displaystyle \sqrt{\frac{\sec \theta -cosec \theta }{\sec \theta +cosec \theta }} is ____



Find the value of \displaystyle \frac{2\sin 68^{\circ}}{\cos 22^{\circ}}-\frac{2\cot 15^{\circ}}{5\tan 75^{\circ}}-\frac{3\tan 45^{\circ}\tan 20^{\circ}\tan 40^{\circ}\tan 50^{\circ}\tan 70^{\circ}}{5}.



Find the value of  \displaystyle \frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}-2.



The value of \displaystyle \cos ^{2}5^{0}+\cos ^{2}10^{0}+\cos ^{2}15^{0}+\cos ^{2}20^{0}+\cos ^{2}70^{0}+\cos ^{2}75^{0}+\cos ^{2}80^{0}+\cos ^{2}85^{0} is equal to



Eliminate  \theta, \displaystyle x=a\cos ^{3}\theta\ y=b\sin ^{3}\theta  



Find the relation obtained by eliminating \displaystyle \theta   from the equations x = r \displaystyle \cos \theta +s\sin \theta and y=r\displaystyle \sin \theta -s\cos \theta



Show that : (i) \tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1 
(ii) \cos 38^{\circ} \cos 52^{\circ} - \sin 38^{\circ} \sin 52^{\circ} = 0.



Evaluate:
(i) \displaystyle \frac { \sin { { 1 }8^{ \circ  } }  }{ \cos { { 72 }^{ \circ  } }  } 

(ii) \displaystyle \frac { \tan { { 26 }^{ \circ  } }  }{ \cot { { 64 }^{ \circ  } }  } 

(iii) \displaystyle \cos { { 48 }^{ \circ  } } -\sin { 42^{ \circ  } } 

(iv) \displaystyle \csc \ { 31 }^{ \circ  }-\sec { { 59 }^{ \circ  } }



If \cos{x} = \dfrac{24}{25}, then  \sec{x} =  



If \sin { \theta  } =\cfrac { 1 }{ 2 } and \cos { \theta  } =-\cfrac { \sqrt { 3 }  }{ 2 } , find the values of the other 4 trignometric functions.



If cosec\ {x} = \dfrac{25}{15},  \sin{x} =



If \tan{x} = \dfrac{7}{24},  \cot{x} =



If \cot{A} = \dfrac{8}{15} and \sin{A} = \dfrac{15}{17} then,     \cos{A} =



If \sin{x} = \dfrac{3}{5}, then \text{ cosec} \ x = ?



What trigonometric ratios of angles from {0}^{o} to {90}^{o} are not defined?



Find the value of 'x'
562227_198cca9bdd6d4de3b4e6363e2953618c.png



Find the value of 'x'
562225.jpg



If A={ 60 }^{ o },B={ 30 }^{ o } then prove that \cos { \left( A+B \right)  } =\cos { A } \cos { B } -\sin { A } \sin { B }



What trigonometric ratios of angles from {0}^{o} to {90}^{o} are equal?



What trigonometric ratios of angles from {0}^{\circ} to {90}^{\circ} are equal to 0?



If A={ 60 }^{ o } and B={ 30 }^{ o }, then prove that \tan { \left( A-B \right)  } =\dfrac { \tan { A } -\tan { B }  }{ 1+\tan { A } \tan { B }  }



What trigonometric ratios of angles from {0}^{o} to {90}^{o} are equal to 1?



Prove that \cos { \theta  } \cdot \text{cosec} { \theta  } =\cot { \theta  }



Find the value of 'x'
562228_9d6797c0be0e410e97b4d6367c515ad4.png



Prove that \dfrac { \sin { \theta  }  }{ 1-\cot { \theta  }  } +\dfrac { \cos { \theta  }  }{ 1-\tan { \theta  }  } =\cos { \theta  } +\sin { \theta  } .



Evaluate without using trigonometric tables
\cos^226^\circ+\cos\,64^\circ \sin\,26^\circ+\dfrac{\tan\,36^\circ}{\cot\,54^\circ}



Without using tables evaluate 3\cos 80^o.\text{cosec}\, 10^o+2\sin 59^o.\sec 31^o.



If \cos { 7A } =\sin { \left( A-{ 6 }^{ o } \right)  } , where 7A is an acute angle. Find the value of A.



Without using trigonometric tables evaluate :
\dfrac { \sin { { 63 }^\circ }  }{ \cos { { 27 }^\circ }  } +\dfrac { \cos { { 39 }^\circ }  }{ \sin { { 51 }^\circ }  } -\sin { { 23 }^\circ } \cdot \sec { { 67 }^\circ } +\csc ^{ 2 }{ { 30 }^\circ }



If \cos{\theta}=\dfrac{1}{2}, then find the value of acute angle \theta.



Prove that: \dfrac {\cos A}{1 + \sin A} + \tan A = \sec A



If \theta = 60^{\circ}, find the value of \cos \theta



Prove that \displaystyle \frac{\tan^2\theta}{(\sec\,\theta-1)^2}=\frac{1+\cos\,\theta}{1-\cos\,\theta}



Without using trigonometric tables, evaluate \sin^{2} 34^{\circ} + \sin^{2} 56^{\circ} + 2\tan 18^{\circ} \tan 72^{\circ} - \cot^{2} 30^{\circ}



Verify the following equalities.
\cos 60^{\circ} = 1 - 2\sin^{2} 30^{\circ} = 2\cos^{2} 30^{\circ} - 1



Verify the following equalities.
\sin^{2}30^{\circ} + \cos^{2} 30^{\circ} = 1



Verify the following equalities.
\cos 90^{\circ} = 1 - 2\sin^{2} 45^{\circ} = 2\cos^{2} 45^{\circ} - 1



Prove that \sqrt {\dfrac {1 + \cos \theta}{1 - \cos \theta}} = cosec \theta + \cot \theta



Prove that
\dfrac {\sin (90^{\circ} - \theta)}{1 + \sin \theta} + \dfrac {\cos \theta}{1 - \cos (90^{\circ} - \theta)} = 2\sec \theta



Verify the following equalities.
1 + \tan^{2} 45^{\circ} = \sec^{2} 45^{\circ}



Verify the following equalities.
\tan^{2} 60^{\circ} - 2\tan^{2} 45^{\circ} - \cot^{2} 30^{\circ} + 2\sin^{2} 30^{\circ} + \dfrac {3}{4} cosec^{2} 45^{\circ} = 0



Verify the given equalities.
\sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ} = \sin 90^{\circ}



Verify the following equalities.
\dfrac {1 - \tan^{2} 60^{\circ}}{1 + \tan^{2} 60^{\circ}} = 2\cos^{2} 60^{\circ} - 1



Verify the following equalities.
4\cot^{2} 45^{\circ} - \sec^{2} 60^{\circ} + \sin^{2} 60^{\circ} + \cos^{2} 60^{\circ} = 1



Simplify \dfrac {\cos 80^{\circ}}{\sin 10^{\circ}} + \cos 59^{\circ} cosec 31^{\circ}



Verify the following equalities.
\dfrac {\sec 30^{\circ} + \tan 30^{\circ}}{\sec 30^{\circ} - \tan 30^{\circ}} = \dfrac {1 + \sin 30^{\circ}}{1 - \sin 30^{\circ}}



Verify the following equalities.
\dfrac {\cos 60^{\circ}}{1 + \sin 60^{\circ}} = \dfrac {1}{\sec 60^{\circ} + \tan 60^{\circ}}



Show that: \tan 35^{\circ} \tan 60^{\circ} \tan 55^{\circ} \tan 30^{\circ} = 1



Prove that: \sec^2\theta =1+\tan^2\theta.



Length of two sides of a triangle are 6 centimetres and 5 centimetres. If their included angle is {50}^{o}. What is the area of the triangle?
Also find the length of its third side.
\left( \sin { { 50 }^{ o } } =0.77,\cos { { 50 }^{ o } } =0.64,\tan { { 50 }^{ o } } =1.19 \right)  



In \Delta ABC, AB = 8 cm, AC = 5 cm and m \angle A = 50^o. Then
(a) What is the length of the perpendicular from C to AB?
(b) Find the length of BC.
[sin 50^o = 0.7660, cos 50^o = 0.6428, tan 50^o = 1.1918]



Without using trigonometric tables, evaluate the following:
2\left (\dfrac {\cos 58^{\circ}}{\sin 32^{\circ}}\right ) - \sqrt {3}\left (\dfrac {\cos 38^{\circ} \text{cosec }52^{\circ}}{\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}}\right ).



Evaluate : \displaystyle \, \frac{cosec 13^{\circ}}{\sec 77^{\circ}} \, - \, \frac{\cot 20^{\circ}}{\tan 70^{\circ}}



Calculate
\displaystyle\, \frac{\sin \, \alpha}{\sin^3 \, \alpha \, + \, \cos^3 \, \alpha} if \tan \alpha =2.



If \cos\theta +\sin\theta =\sqrt{2}\cos\theta, show that \cos\theta -\sin\theta=\sqrt{2}\sin\theta



Show that:
\left( 1+\cot { A } +\tan { A }  \right) \left( \sin { A } -\cos { A }  \right) =\cfrac { \sec { A }  }{\text{cosec} ^{ 2 }{ A }  } -\cfrac {\text{cosec }{ A }  }{ \sec ^{ 2 }{ A }  } =\sin { A } \tan { A } -\cot { A } \cos { A }



Prove that \dfrac{\tan^2A}{1 +  \tan^2A}  +  \dfrac{\cot^2A}{1 +\cot^2A} = 1



Prove that \dfrac{\tan A \, + \, \tan B}{\cot A \, + \, \cot B} \, = \, \tan A \, \tan B



Prove the following statements.
\dfrac {\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B.



Evaluate the following : sin 45^{\circ} sin 30^{\circ} +  cos 45^{\circ} cos 30^{\circ}



Prove that \tan^2A  + \cot^2A = \sec^2A.cosec^2A \, - \, 2



Prove that  \dfrac{\cos^2 \theta}{\sin \theta} - cosec \theta +  \sin \theta = 0.



Evaluate \sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}.



Evaluate the following :
cos 60^{\circ} cos 45^{\circ} - sin 60^{\circ} sin 45^{\circ}



Prove that \dfrac{(1 + \tan^2\theta) \cot \theta}{co\sec^2 \theta} = \tan \theta



Prove that \dfrac{\sin 70^{\circ}}{\cos 20^{\circ}} + \dfrac{\text{cosec} 20^{\circ}}{\sec 70^{\circ}} - 2 \cos 70^{\circ} \text{cosec} 20^{\circ}  = 0



Express the following in terms of trigonometric ratios of angles lying between 0^\circ and 45^\circ:
\cot 85^\circ + \cos 75^\circ



If A = 30^{\circ} and B = 60^{\circ}, verify that
(i) \sin(A + B) = \sin A \cos B + \cos A \sin B
(ii) \cos(A + B) = \cos A \cos B - \sin A \sin B



Express the following in terms of trigonometric ratios of angles lying between 0 and 45:
\text{cosec} 54^0 + \sin 72^0



In a rectangle ABCD, AB = 20 cm, \angleBAC = 60^{\circ}, calculate side BC and diagonals AC, BD.



In a right \triangle \text{ABC}, right angled at \text{C}, if \angle \text{B} = 60^{\circ} and \text{AB} = 15 units. Find the remaining angles and sides.



Prove the following :
\dfrac{\cos(90^{\circ} \, - \, \theta) \, \sec \, (90^{\circ} \, - \, \theta) \, \tan \, \theta}{\text{cosec}(90^{\circ} \, - \, \theta) \, \sin(90^{\circ} \, - \, \theta) \, \cot(90^{\circ} \, - \, \theta)} \, + \ \dfrac{\tan(90^{\circ} \, - \, \theta)}{\cot \, \theta} \, = \, 2



If \Delta ABC is a right triangle such that \angle C = 90^{\circ}, \, \angle A = 45^{\circ} and BC = 7 units. Find \angle B, AB and AC.



Prove that \sin 48^{\circ}  \sec 42^{\circ} + \cos 48^{\circ}  \text{cosec} 42^{\circ} = 2



Prove that: \tan 20^{\circ} \tan 35^{\circ} \tan 45^{\circ} \tan 55^{\circ} \tan 70^{\circ} = 1



Prove that: \dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec  \theta\ {cosec}\  \theta



If 3x\sin 60^o.\cos^2 30^o=\dfrac{\tan^2 45^o.\sec 60^o}{cosec 60^o.\sin 45^o}, then find the value of x.



If a \cos \theta - b \sin \theta = x and a \sin \theta + b \cos \theta = y then find \dfrac{a^{2} + b^{2}}{x^{2} + y^{2}}.



Express each of the following in trigonometric ratios of angles between 0^{\circ} \, and \, 45^{\circ} :
sin 72^{\circ} \, + \, cot 72^{\circ}



Prove that :
sin 35^{\circ} \, sin 55^{\circ} \, - \, cos 35^{\circ} \, cos 55^{\circ} \, = \, 0



The value of \left( 1+\cos { \dfrac { \pi  }{ 8 }  }  \right) \left( 1+\cos { \dfrac { 3\pi  }{ 8 }  }  \right) \left( 1+\cos { \dfrac { 5\pi  }{ 8 }  }  \right) \left( 1+\cos { \dfrac { 7\pi  }{ 8 }  }  \right) =\dfrac { a }{ 256 } . Find a.



Find the value of:
\dfrac{1 + \cos A -\sin A}{1 + \cos A +\sin A} -\sec A + \tan A



Prove that \dfrac{1+2\cos^2\,A}{1+3\cot^2\,A}=\sin^2\,A



Find the value of (\sin \theta + \sec \theta)^{2} + (\cos \theta + \text{cosec} \theta)^{2} - (1 + \sec \theta \text{cosec} \theta)^{2}



If cosec^{6} \theta -cot^{6} = a cot^{4}\theta + b cot^{2}\theta + c then a + b + c = 



If \dfrac{\tan^3\alpha}{1+\tan^2\alpha}= \sec\alpha \sin\alpha- a \sin\alpha \cos\alpha. Find a



If x= r \cos\theta. \sin\phi, y= \sin\theta . \sin\phi, z= r \cos\phi Prove that x^2+y^2+z^2=r^2



Prove that \sqrt { \dfrac { \sin { A } +1 }{ 1-\sin { A }  }  } +\sqrt { \dfrac { 1-\sin { A }  }{ \sin { A } +1 }  } =2\sec { A }



Solve: \cos^{2}\theta +\cos^{2}\theta \cot^{2}\theta-\cot^{2}\theta



\dfrac { \cos { x }  }{ { \left( \cos { x } +\sin { x }  \right)  }^{ 2 } }



If (\sec A+ \tan A -1)(\sec A-\tan A+1)= a\tan A.Find a



If \dfrac{\tan\theta}{(1+\tan^2\theta)^2}+ \dfrac{\cot\theta}{(1+ \cot^2\theta)^2}= m\sin \theta \cos\theta. Find m



If \sin\theta =\dfrac{3}{4} , show that \sqrt{\dfrac{\text{cosec}^2\theta - \cot^2\theta}{\sec^2\theta-1}}=\dfrac{\sqrt m}{3}..Find m



si{n^2}{30^ \circ } + co{s^2}60 + {\tan ^2}{45^ \circ } + se{c^2}{60^ \circ } - co{\sec ^2}{30^ \circ } = \frac{3}{2}



If \dfrac{\sin\theta - \cos\theta +1}{\sin\theta + \cos\theta -1}= \dfrac{m}{\sec\theta - \tan\theta}, Find m



If x= \text{cosec}A + \cos A and y= \text{cosec}A- \cos A then prove that \left(\dfrac{2}{x+y}\right) ^2+ \left(\dfrac{x-y}{2}\right)^2-1=0.



If {\cos}^{4}{\theta}+{\cos}^{2}{\theta}=1 then show that
i) {\sec}^{4}{\theta}-{\sec}^{2}{\theta}=1
ii) {\cot}^{4}{\theta}-{\cot}^{2}{\theta}=1 



If A+ B =90^{\circ} then prove \displaystyle \sqrt{\frac{ \tan A\tan B + \tan A\cot B}{\sin A \sec B} -\frac{\sin^{2}B}{\cos^{2}A}} = \tan A



Solve 7cos^{2}\theta + 3 sin^{2}\theta =4.



Evaluate
\dfrac{{\sin {{90}^ \circ }}}{{\cos {{45}^ \circ }}} + \dfrac{1}{{\cos ec{{30}^ \circ }}}



Prove \dfrac{1+\cos{A}+\sin{A}}{1+\cos{A}-\sin{A}}=\dfrac{1+\sin{A}}{\cos{A}}



If \tan\theta =\dfrac{1}{\sqrt{7}}, show that \dfrac{cosec^2\theta -\sec^2\theta}{cosec^2\theta +\sec^2\theta}=\dfrac{3}{4}.



2x\tan ^{ 2 }{ { 60 }^{ o }+3x\sin ^{ 2 }{ { 30 }^{ o } }  } =\dfrac { 27\cos ^{ 2 }{ { 45 }^{ o } }  }{ 4\sin ^{ 2 }{ { 60 }^{ o } }  }



Prove: 1- \dfrac{cos^2A}{1+SinA}= SinA.



Prove:\cfrac{{\cot \theta  - \cos \theta }}{{\cot \theta  + \cos \theta }} = \cfrac{{{\mathop{\rm cosec}\nolimits} \theta  - 1}}{{{\mathop{\rm cosec}\nolimits} \theta  + 1}}



If \cot x =2, find the value of \dfrac{(2+2\sin x)(1-\sin x)}{(1+\cos x)(2-2\cos x)}



\dfrac{2}{3}\text{cosec}^258^0 -\dfrac{2}{3}\cot 58^0 \tan32^0-\dfrac{5}{3}\tan 13^0\tan37^0\tan45^0\tan53^0\tan 77^0=-m.Find m



{\sec ^4}x - {\sec ^2}x = {\tan ^4}x + {\tan ^2}x



Prove:\left( {1 + \,{{\tan }^2}\,\theta } \right)\,{\sin ^2}\,\theta \, = \,{\tan ^2}\,\theta



Prove: \sec ^{ 4 }{ \theta  } -\tan ^{ 4 }{ \theta  } =2\sec ^{ 2 }{ \theta  } -1



Prove that \dfrac{\sin \theta-\cos \theta+1}{\sin \theta+ \cos \theta-1}=\dfrac{1}{\sec \theta- \tan \theta } [use the identity \sec^{2} \theta=1+\tan^{2} \theta.]



Prove that \dfrac{2}{1-\sin A}\times \dfrac{1}{1+\sin A}=2\sec^2 A



Evaluate \dfrac {2\cos^{2}90^{o}+4\cos^{2}45^{o}+\tan^{2}60^{o}+3csc^{2}60^{o}+1}{3csc 60^{o}-\dfrac {7}{2}\sec^{2}45^{o}+2\csc 30^{o}-1}



If \sec{\theta}=x+\cfrac{1}{4x} then prove \sec{\theta}+\tan{\theta}=2x



Evaluate:
{ \sin }^{ 2 }{ 5 }^{ o }+{ \sin }^{ 2 }{ 10 }^{ o }+..........{ \sin }^{ 2 }{ 85 }^{ o } ?



Prove: { \left( \tan { \theta  } +\sec { \theta  }  \right)  }^{ 2 }+{ \left( \tan { \theta  } -\sec { \theta  }  \right)  }^{ 2 }=\cfrac { 2\left( 1+\sin ^{ 2 }{ \theta  }  \right)  }{ \cos ^{ 2 }{ \theta  }  }



\tan^{2}{\phi}-\sin^{2}{\phi}=\tan^{2}{\phi}.\sin^{2}{\phi}



Solve :
2\tan^{2}{45^{0}}+\cos^{2}{45^{0}}-\sin^{2}{45^{0}}



Solve 
{\sec ^6}x - {\tan ^6}x - 3{\sec ^2}x.{\tan ^2}



To prove that 
\left(\dfrac {1}{\sec^{2}x-\cos^{2}x}+\dfrac {1}{\csc^{2}x-\sin^{2}x}\right)\sin^{2}x.\cos^{2}x
=\dfrac {1-\sin^{2}x \cos^{2}x}{2+\sin x\cos^{2}x}



Find the values of the trigonometric ratio
\tan \theta=11



Show that (\text{cosec}{\theta}-\cot{\theta})^{2}=\dfrac{1-\cos{\theta}}{1+\cos{\theta}}



\dfrac{\cos{A}-1}{2-\sec^{2}{A}}=\dfrac{\cot{A}}{1+\tan{A}}
Find A.



If x=a\sin\theta and y=b\tan\theta, then prove that \dfrac{a^{2}}{x^{2}}-\dfrac{b^{2}}{y^{2}}=1.



Express \sec{\theta} in terms of \cot{\theta}



If x=r\sin A\cos C, y=r\sin A\sin C and z=r\cos A, prove that r^{2}=x^{2}+y^{2}+z^{2}.



If \dfrac{\cos{A}}{\cos{B}}=m and \dfrac{\cos{A}}{\sin{B}}=n.Prove:- \left(m^{2}+n^{2}\right)\cos^{2}B=n



Show that \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A cosecA



Prove that \dfrac { 1 + \cos A } { \sin A } + \dfrac { \sin A } { 1 + \cos A } = 2 \csc A



Evaluate:
\tan ^{ 2 }{ { 30 }^{ o } } \sin { { 30 }^{ o } } +\cos { { 60 }^{ o } } \sin ^{ 2 }{ { 90 }^{ o } } \tan ^{ 2 }{ { 60 }^{ o } } -2\tan { { 45 }^{ o } } \cos ^{ 2 }{ { 0 }^{ o } } \sin { { 90 }^{ o } }



Given sec\: \theta = \dfrac {13}{12}, calculate all other trigonometric ratios 



In fig. \triangle PQR right angled at Q,PQ=6cm and PR=12cm. Determine \angle QPR and \angle PRQ.
1231926_a07c0332108c44f4945100b107905bed.png



If \tan \theta + \sec \theta =1.5, find \sin \theta.



Evaluate \dfrac { \sin 18 ^ { \circ } } { \cos 72 ^ { \circ } }.



Prove that: \cfrac { \sin { \theta  }  }{ \left( 1-\cot { \theta  }  \right)  } +\cfrac { \cos { \theta  }  }{ \left( 1-\tan { \theta  }  \right)  } =\cos { \theta  } +\sin { \theta  }



Evaluate : \dfrac{ cos 22^0}{sin 68^0}



If 4tan\theta =3, evaluate \left( \dfrac { 4sin\theta -cos\theta +1 }{ 4sin\theta +cos\theta -1 }  \right)



If \cot\theta=3x-\dfrac{1}{12x} then show that \csc\theta+\cot\theta=6x or -\dfrac{1}{6x}.



Evaluate : \dfrac { 4 }{ { cot }^{ 2 }{ 30 }^{ 0 } } +\dfrac { 1 }{ { sin }^{ 2 }{ 30 }^{} } -2{ cos }^{ 2 }{ 45 }^{ 0 }-{ sin }^{ 2 }{ 0 }^{ 0 }



If \cot \theta=\dfrac {15}{8}, find \cos \theta and \csc \theta.



Find the value of 6\tan^{ 2 }\theta -6\sec^{ 2 }\theta .



Evaluate :
\left( 3-\cot{ 30 }^{ \circ } \right) -{ \tan }^{ 3 }{ 60 }^{ \circ }+2\tan{ 60 }^{ \circ }



Prove that :
(\sin\theta+\cos\theta)(\tan\theta+\cot\theta)=\sec\theta+\csc\theta.



The value of tan^2 60^{0} is ?



Evaluate:
\sin {25^0}\cos {65^0} + \cos {25^0}\;\sin {65^0}



If A and B are acute angles such that \tan A = \dfrac {1}{3}, \tan B = \dfrac{1}{2} and \tan(A + B) = \dfrac {\tan A + \tan B}{1 - \tan A \tan B}, show that A + B = 45^{\circ}.



If in  \Delta A B C , \angle B = 90 ^ { \circ } , a = 12 \mathrm { cm } , b = 13 \mathrm { cm } ,  then write all the trigonometric ratios for  \angle A  and  \angle C



Without using tables, evaluate:
4 \tan 60 ^ { \circ } \sec 30 ^ { \circ } + \dfrac { \sin 31 ^ { \circ } \sec 59 ^ { \circ } + \cot 59 ^ { \circ } \cot 31 ^ { \circ } } { 8 \sin ^ { 2 } 30 ^ { \circ } - \tan ^ { 2 } 45 ^ { \circ } }



In  \Delta { ABC } ,  if  \dfrac { \cos { A } } { a } = \dfrac { \cos  { B } } { b },  then show that it is an isosceles triangle.



If the angles (2x-10)^{\circ} and (x-5)^{\circ} are complementary angles, find x (in \, degrees).



If \tan \theta = \dfrac { 5 } { 4 }, then find the value of \dfrac { 3 \sin \theta + 4 \cos \theta } { 3 \sin \theta - 4 \cos \theta }.



If sec \theta = 5/4 , show that  \left( \dfrac { sin\theta -2cos\theta  }{ tan\theta -cos\theta  }  \right) = \dfrac{12}{7}



If tan \theta = \dfrac{20}{21} ,show that   \left( \dfrac { 1-sin\theta +cos\theta  }{ 1+sin\theta +cos\theta  }  \right)  = \dfrac{3}{7}



If tan \theta = \dfrac{1}{ \sqrt 7}   show that    \dfrac{(cosec^2\theta - sec^2 \theta)}{cosec^2 \theta + sec^2 \theta)} = \dfrac{3}{4}



In a right \triangle ABC , right-angled at B, if \tan A = 1, then verify that, 2 sin A. cos A = 1



In a \triangle ABC angle B = 90 degree, AB = 12 cm and BC = 5 cm 
Find (i) cos A (ii) cosec A (iii) cos C (iv) cosec C 



If 3 cot \theta = 2 ,show that   \left( \dfrac { 4sin\theta -3cos\theta  }{ 2sin\theta +6cos\theta  }  \right)  = \dfrac{1}{3}



If cot \theta = 3/4, show that 
 \left( \frac { sec\theta -cos\theta  }{ sec\theta +cosec\theta  }  \right)  = \frac{1}{\sqrt{7}}



If sin \theta = \dfrac34, show that   \sqrt { \dfrac { cosec^ 2\theta -cot^ 2\theta  }{ sec^ 2\theta -1 }  }  = \dfrac{\sqrt{7}}{3} .



If cos \theta = \dfrac{3}{5} , show that  \dfrac { \left( sin\theta -cot\theta  \right)  }{ 2tan\theta  } = \dfrac{3}{160}



If tan \theta = 4/3 , show that (sin \theta + cos \theta) = 7/5



In a \triangle ABC , in which \angle = 90^o , \angle ABC = \theta^o, BC = 21 units, AB = 29 units, show that (cos^2 \theta - sin^2 \theta ) = \dfrac{41}{841}



If sec \theta = \dfrac{17}{8}, verify that  \dfrac{3-4 sin^2 \theta}{4 cos^2 \theta - 3} = \dfrac{3- tan^2 \theta}{1 - 3tan^2 \theta}



If 3 \cot \theta = 4 , show that \dfrac{(1-\tan^2 \theta)}{(1+\tan^2 \theta)}=(\cos^2 \theta - \sin^2 \theta) .



Without using trigonometric tables, prove that:
\tan ^{ 2 }{ { 66 }^{ o } } -\cot ^{ 2 }{ { 24 }^{ o } } =0



Without using trigonometric tables, prove that:
\left( \sin { { 65 }^{ o } } +\cos { { 25 }^{ o } }  \right) \left( \sin { { 65 }^{ o } } -\cos { { 25 }^{ o } }  \right) =0



Without trigonometric tables, prove that:
\cos { { 54 }^{ o } } \cos { { 36 }^{ o } } -\sin { { 54 }^{ o } } \sin { { 36 }^{ o } } =0\quad



Without using trigonometric tables, prove that:
\sin ^{ o }{ { 48 }^{ o } } +\sin ^{ o }{ { 42 }^{ o } } =1



Without using trigonometric tables, prove that:
co\sec ^{ 2 }{ { 72 }^{ o } } -\tan ^{ 2 }{ { 18 }^{ o } } =1



Without using trigonometric tables, prove that:
\cos ^{ 2 }{ { 57 }^{ o } } -\sin ^{ 2 }{ { 33 }^{ o } } =0



Without trigonometric tables, prove that:
\sin { { 53 }^{ o } } \cos { { 37 }^{ o } } +\cos { { 53 }^{ o } } \sin { { 37 }^{ o } } =1



Without trigonometric tables, prove that:
\sec { { 70 }^{ o } } \sin { { 20 }^{ o } } +\cos { { 20 }^{ o } } co\sec { { 70 }^{ o } } =2



Without using trigonometric tables, prove that:
\cos ^{ 2 }{ { 75 }^{ o } } +\cos ^{ 2 }{ { 15 }^{ o } }=1



Without trigonometric tables, prove that:
\sin { { 35 }^{ o } } \sin { { 55 }^{ o } } -\cos { { 35 }^{ o } } \cos { { 55 }^{ o } } =0



Without trigonometric tables, prove that:
\left( \sin { { 72 }^{ o } } +\cos { { 18 }^{ o } }  \right) \left( \sin { { 72 }^{ o } } -\cos { { 18 }^{ o } }  \right) =0



Prove that:
\sec^{2}\theta  \textrm{cosec}^{2}\theta   = \tan^{2}\theta   + \cot^{2}\theta   + 2



Prove the following statement:
(\sec A + \cos A) (\sec A - \cos A) = \tan^{2}A + \sin^{2}A.



Prove that 
\cfrac { \cos { { 80 }^{ o } }  }{ \sin { { 10 }^{ o } }  } +\cos { { 59 }^{ o } } co\sec { { 31 }^{ o } } =2



Prove the following statements.
\dfrac {1 + \tan^{2}A}{1 + \cot^{2}A} = \dfrac {\sin^{2}A}{\cos^{2}A}.



Prove that,
\dfrac {\sec A - \tan A}{\sec A + \tan A} = 1 - 2\sec A \tan A + 2\tan^{2}A.



Without trigonometric tables, prove that:
\tan { { 48 }^{ o } } \tan { { 23 }^{ o } } \tan { { 42 }^{ o } } \tan { { 67 }^{ o } } =1



Prove that 
\cfrac { \sin { { 70 }^{ o } }  }{ \cos { { 20 }^{ o } }  } +\cfrac { co\sec { { 20 }^{ o } }  }{ \sec { { 70 }^{ o } }  } -2\cos { { 70 }^{ o } } co\sec { { 20 }^{ o } } =0



Prove that 
\cfrac { 2\sin { { 68 }^{ o } }  }{ \cos { { 22 }^{ o } }  } -\cfrac { 2\cot { { 15 }^{ o } }  }{ 5\tan { { 75 }^{ o } }  } -\cfrac { 3\tan { { 45 }^{ o } } \tan { { 20 }^{ o } } \tan { { 40 }^{ o } } \tan { { 50 }^{ o } } \tan { { 70 }^{ o } }  }{ 5 } =1\quad



Prove the following statements.
\sqrt {co\sec^{2}A - 1} = \cos A\cdot \csc A.



Prove the following statements.
\tan^{2}A - \sin^{2}A = \sin^{4} A \sec^{2}A.



Prove that following identities, where the angles involved are acute angles for which the trigonometric ratios as defined: \left ( 1-\tan ^{2}A \right )/\left ( \cot ^{2}A-1 \right )=\tan ^{2}A.



If  \tan A=1/\sqrt{3}, find all other trigonometric ratios of angle  A.

1783926_25e9665978094a47adb2fde26d510592.png



Prove that following identities, where the angles involved are acute angles for which the trigonometric ratios as defined: \cos \theta /\left ( 1-\tan \theta \right )-\sin ^{2}\theta /\left ( \cos \theta -\sin \theta \right )=\cos \theta +\sin \theta .



Prove that:
\left (\dfrac {1}{\sec^{2}\alpha - \cos^{2}\alpha} + \dfrac {1}{\text{cosec}^{2}\alpha - \sin^{2}\alpha}\right ) \cos^{2} \alpha \sin^{2}\alpha = \dfrac {1 - \cos^{2} \alpha \sin^{2} \alpha}{2 + \cos^{2} \alpha \sin^{2} \alpha}.



Without using trigonometric tables, evaluate the following: \left ( \sin 29^{0}/cosec61^{0} \right )+2\cot 8^{0}\cot 17^{0}\cot 45^{0}\cot 73^{0}\cot 82^{0}-3\left ( \sin ^{2}38^{0}+\sin ^{2}52^{2} \right ).



Without using trigonometric tables, evaluate the following: \frac{cosec^{2}\left ( 90-\theta  \right )-\tan ^{2}\theta }{2\left ( \cos ^{2}48^{0}+\cos ^{2}42^{0} \right )}-\frac{2\tan ^{2}30^{0}\sec ^{2}52^{0}\sin ^{2}38^{0}}{cosec^{2}70^{0}-\tan ^{2}20^{0}}.



Show that 
\dfrac {4}{3} \cot^{2} 30^{\circ} + 3\sin^{2} 60^{\circ} - 2cosec^{2} 60^{\circ} - \dfrac {3}{4} \tan^{2} 30^{\circ} = 3\dfrac {1}{3}.



Verify that
\sin^{2} 30^{\circ} + \sin^{2} 45^{\circ} + \sin^{2} 60^{\circ} = \dfrac {3}{2}.



Prove the following statement.
\dfrac {\cos A cosec A - \sin A \sec A}{\cos A + \sin A} = cosec A - \sec A.



Show that 
\tan 48^{\circ} \tan 16^{\circ} \tan 42^{\circ} \tan 74^{\circ} = 1



Prove the following identities:
\dfrac{sec A -1}{secA +1} = \dfrac{1-cosA}{1+ cosA}



Show that 
\cos 36^{\circ} \cos 54^{\circ} - \sin 36^{\circ} \sin 54^{\circ} = 0



Prove the following identities:
\dfrac{1+sinA}{1-sinA}= \dfrac{cosec A + 1}{cosec A -1}



Evaluate:
3 \dfrac{sin 72^\circ}{cos 18^\circ}- \dfrac{sec 32^\circ}{cosec58^\circ}



Evaluate
\sin 15^{\circ} \sec 75^{\circ}



Evaluate 
\tan 26^{\circ} \tan 64^{\circ}



If \sec \theta =\cfrac{13}{5}, show that \cfrac { 2\sin { \theta  } -3\cos { \theta  }  }{ 4\sin { \theta  } -9\cos { \theta  }  } =3



Evaluate 
\dfrac{\tan 36^{\circ}}{\cot 54^{\circ}}  



2 \dfrac{tan57^\circ}{cot 33^\circ} - \dfrac{cot 70^\circ}{tan20^\circ} - \sqrt{2} cos 45^\circ



\dfrac{cot^2 41^\circ}{tan^2 49^\circ} - 2 \dfrac{sin^2 75^\circ}{cos^2 15^\circ}



Find the value of:

\dfrac{3 sin 72^\circ}{ cos 18^\circ} - \dfrac{sec 32^\circ}{cosec 58^\circ}



Find AD(Refer figure)
1842272_e20c12a23ed1460898108f1734344003.png



\dfrac{5 \ sin 66^\circ}{cos 24^\circ}- \dfrac{2 \ cot 85^\circ}{tan 5^\circ}



sin 27^\circ \ sin 63^\circ- cos 63^\circ \ cos 27^\circ



In the given figure, AB and EC are parallel to each other. Sides AD and BC are 2\ cm each and are perpendicular to AB.
Given that \angle AED = 60^{\circ} and \angle ACD = 45^{\circ}. Calculate AB.
1842293_df1f51a63e9d4e099b10542a19064c8e.png



Find the length of AB.
1842291_54899ddd86c64396a1edbc3296983767.png



Evaluate:
sec 26^\circ \ sin 64^\circ + \dfrac{cosec 33^\circ}{sec 57^\circ}



Evaluate:
2 \left( \dfrac{tan 35^\circ}{cot 55^\circ} \right)^2+ \left(\dfrac{cot 55^\circ}{tan 35^\circ} \right)^2 - 3 \left( \dfrac{sec 40^\circ}{cosec 50^\circ} \right)



Find AD.(Refer figure)
1842271_193041693f044e9483111d1eff1e9b82.png



Evaluate: \dfrac{\cos 22^{0}}{\sin68^{0}}



Find AD.(Refer figure)
1842305_842850490e874301baa668d478ce60ec.png



Find BC.(Refer figure)
1842304_04743e48af0548b88e57616a666ec341.png



Refer given figure, Find AB and BC
1842320_df5c75c01a1644dab29a8b3562ac69be.png



Find PQ, if AB = 150\ m, \angle P = 30^{\circ} and \angle Q = 45^{\circ}.
1842325_790f82ab377547018180b898b96a4863.png



Refer given figure, Find AB and BC.
1842321_992b76f12d5f4b1181d7e6f8b11d888a.png



Find PQ, if AB = 150\ m, \angle P = 30^{\circ} and \angle Q = 45^{\circ}.
1842324_2c4800cd127b4dd289bee02a33c651b5.png



In the given figure, AB and EC are parallel to each other. Sides AD and BC are 2\ cm each and are perpendicular to AB.
Given that \angle AED = 60^{\circ} and \angle ACD = 45^{\circ}. Calculate: AE.
1842298_ab8311d40a9f433fb01d0debf2098080.png



In the given figure, AB and EC are parallel to each other. Sides AD and BC are 2\ cm each and are perpendicular to AB.
Given that \angle AED = 60^{\circ} and \angle ACD = 45^{\circ}. Calculate AC.
1842296_da7052611c6d4c40b6e747c06a91be96.png



Find AC.(Refer figure)
1842308_2e9706b4571b4c5db7ca59572b38f06a.png



Evaluate:
\dfrac{\cos55^{0}}{\sin35^{0}}+\dfrac{\cot35^{0}}{\tan55^{0}}



Evaluate:
\dfrac{\cot54^{0}}{\tan36^{0}}+\dfrac{\tan20^{0}}{\cot70^{0}}-2



Evaluate:
\sin42^{0}\sin48^{0}-\cos42^{0}\cos48^{0}



Show that:
\sin42^{0}\sec48^{0}+\cos42^{0}cosec48^{0}=2



Evaluate:
\dfrac{2\tan53^{0}}{\cot37^{0}}-\dfrac{\cot80^{0}}{\tan10^{0}}



Evaluate: \dfrac{\sec75^{0}}{cosec15^{0}}



Evaluate:
3\dfrac{\sin72^{0}}{\cos18^{0}}-\dfrac{\sec32^{0}}{cosec58^{0}}



Show that:
\tan10^{0}\tan15^{0}\tan75^{0}\tan80^{0}=1



Evaluate:
\dfrac{\sin80^{0}}{\cos10^{0}}+\sin59^{0}\sec31^{0}



Evaluate: \dfrac{\tan47^{0}}{\cot43^{0}}



What is the meaning of trigonometry?



Evaluate:
2\dfrac{\tan57^{0}}{\cot33^{0}}-\dfrac{\cot70^{0}}{\tan20^{0}}-\sqrt{2}\cos45^{0}



Find the value of the following :
\dfrac{\cos 37^o}{\sin 53^o}



Evaluate  :
cos 48^0 -  sin 42^0



Find the value of the following :
\dfrac{\cos 19^o}{\sin 71^o}



Find the value of the following :
\cot 34^o- \tan 56^o



Evaluate:
\dfrac{\cos70^{0}}{\sin20^{0}}+\dfrac{\cos59^{0}}{\sin31^{0}}-8\sin^{2}30^{0}



Find the value of the following :
\dfrac{\tan 10^o}{\cot 80^o}



Evaluate:
\left( \dfrac{\sin 27^o}{\cos 63^o} \right)^2 + \left( \dfrac{\cos 63^o}{\sin 27^o}\right)^2



Prove that 
\sin \theta \, cosec \theta + \cos \theta \sec \theta = 2 .



Solve:
\sqrt {\dfrac {\sec \theta +1}{\sec \theta -1}}=\cot \theta +\csc \theta 



Find the value of the following :
\dfrac{\sin 36^o}{\cos 54^o} - \dfrac{\sin 54^o}{\cos 36^o}



Evaluate:
\sin 70^o \sin 20^o - \cos 20^o \cos 70^o



Evaluate:
\dfrac{2 \cos 67^o}{\sin 23^o}- \dfrac{\tan 40^o}{\cot 50^o}- \cos 60^o



Evaluate:
\left( \dfrac{\sin 35^o}{\cos 55^o} \right)^2 + \left( \dfrac{\cos 55^o}{\sin 35^o}\right)^2 -2 \cos 60^o



Prove :
\tan \theta  + \tan \left( {{{90}^ \circ } - \theta } \right) = \sec \theta \sec \left( {{{90}^ \circ } - \theta } \right)



If \displaystyle \frac {9x}{\cos\theta}+\frac {5y}{\sin\theta}=56 and \displaystyle \frac {9x \sin\theta}{\cos^2\theta}-\cfrac {5y \cos\theta}{\sin^2\theta}=0, then the value of [(9x)^{2/3}+(5y)^{2/3}]^3 is



Express the trigonometric ratios \sin A, \sec A and \tan A in terms of \cot A.



If \text{cosec} \theta -\sin \theta =m and \sec \theta - \cos \theta =n, then find the value of (m^{2}n)^{2/3} + (mn^{2})^{2/3}.



Class 10 Maths Extra Questions