Processing math: 65%

Inverse Trigonometric Functions - Class 12 Engineering Maths - Extra Questions

sin1x+cos1x= ________



If xy<1, tan1x+tan1y= _______.



Prove that tan1(1)+tan1(2)+tan1(3)=π



If f:(π2,π2)(,) is defined by f(x)=tanx, then f1(3)=



If sin11+x+x2+tan1x+x2=π2
thenx=



Simplify  sin(sin1(15)+cos1(x))=1



Solve sin1x



If tan1(12i2)=t, then tant equals 



Prove tan134+tan135tan1819=π4.



Evaluate : cos[cos1(32)+π6]



If sin1x=π5, for some x(1,1), then find the value of cos1x.



Solve sin1(cosx)



Evaluate: tan13sec1(2)+cosec123.



Prove that sincot1tancos1x=sincosec1cottan1x=x where xϵ(0,1]



Write the function in the simplest form:
tan11x21,|x|>1



Prove: 2tan112+tan117=tan13117



Prove: tan1211+tan1724=tan112



If tan1x1x2+tan1x+1x+2=π4, then find the value of x.



If sin(sin115+cos1x)=1, then find the value of x.



Find the value of tan12[sin12x1+x2+cos11y21+y2],|x|<1,y>0 and xy<1



Prove: 9π894sin113=94sin1223



If A=11cot1(11)+12cot1(12)+13cot1(13) and B=1cot11+2cot12+3cot13 then |BA| is equal to aπb+cdcot13 where a,b,c,dN and are in their lowest form then a+b+c+d equal to 



Solve the equation: tan1x+2cot1x=2π3.



Write the simplest form of tan1(cosxsinxcosx+sinx),0<x<π2.



Write tan1[1+x21x],x0 in the simplest form.



If sin(sin115+cos1x)=1 then find the value of x.



Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy,      xy<1
       π+tan1x+y1xy,         xy>1.
(a) cos1(cos7π6)
(b) cos1(cos4π3)



Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy,      xy<1
       π+tan1x+y1xy,         xy>1.
(a) tan12mnm2n2+tan12pqp2q2=tan12MNM2N2
where M=mpnq,N=np+mq
(b) 23tan13mn2m3n33m2n+23tan13pq2p3q33p2q=tan12MNM2N2
Where M=mp+nq,N=np+mq and all the letters are +ive quantities.



Solve the equation tan1x2+x+sin1x2+x+1=π2



If cot1(1+sinx+1sinx1+sinx1sinx)=xm,x(0,π4).Find m



If (Tan1x)2+(Cot1x)2=5π28,then x=



find the value of the following: 
(i) sin1(12)
(ii) cos1(32)
(iii) cosec1(2)
(iv) tan1(3)
(v) cos1(12)
(vi)tan1(1)



Differentiate  cos1(4x23x);xϵ(12,1) 



Solve the following for x:tan1(x2x3)+tan1(x+2x+3)=π4,|x|<1



Simplify : cot1[1+x2x]



Does sin1(25)=tan1(2) & please give value.



Find the domain and range of the real function x+2x28x4



Solve  y=tan15axa26x2, find dydx



Calculating the principal value, find the value of sin[2sin1(45)].



Find  sin1(3+122)=



Prove that sin135sin1817=cos1(8485) 



2tan1(1+x1x)+sin1(1x21+x2)=



Prove
4tan1(15)tan1(170)+tan1(199)=π4.



Find the value of \sin\left(\dfrac{1}{2}\cot^{-1}\left(-\dfrac{3}{4}\right)\right).



if\int \sin^{-1}\left ( \dfrac{2x+2}{\sqrt{4x^2+8x+13}} \right )dx=(x + 1)tan^{-1}\left ( \dfrac{2x+2}{3}\right )+\lambdaln(4x^2+8x+13)+C
then find the value of - 4\lambda



If 0< \cos^{-1} x< 1 and 1+\sin (\cos^{-1}x)+\sin^{2}(\cos^{-1}x)+\sin^{3} (\cos^{-1}x)+.........\infty =2, then find 2\sqrt{3}x.



Find the number of values of x of the form 6n, where n is an integer , in the domain of the function  f(x)=x\ln|x-1|+\displaystyle \frac{\sqrt{64-x^{2}}}{\sin x}



If \displaystyle 0< \cos ^{-1}x< 1 and   \displaystyle 1+\sin(\cos^{-1}x)+\sin^{2}(\cos^{-1}x)+\sin^{3}(\cos^{-1}x)+...infinity= 2 then the value of   \displaystyle 12 x^{2} is



If the domain of the function \displaystyle f(x)= \sqrt{3\cos^{-1}(4x)-\pi}  is [a,b] then the value of \displaystyle (4a+64b) is



If \displaystyle x= \sin^{-1}(a^{6}+1)\cos^{-1}(a^{4}+1)-\tan^{-1}(a^{2}+1),a\epsilon R , then the value of \displaystyle \sec^{2}x is




If range of the function \displaystyle f(x)= \sin^{-1}x+2\tan^{-1}x+x^{2}+4x+1 is [p,q], then the value of (p+q) is



Prove that   

2\tan^{-1} \dfrac {1}{2} + \tan^{-1}\dfrac {1}{7} = \tan^{-1} \dfrac {31}{17}



Prove that \tan^{-1} \left [\dfrac {\sqrt {1 + x} + \sqrt {1 - x}}{\sqrt {1 + x} - \sqrt {1 - x}}\right ] = \dfrac {\pi}{4} + \dfrac {1}{2} \cos^{-1} x, 0 < x < 1



The number of real solutions of the equation
\sin^{-1}\left(\displaystyle\sum^{\infty}_{i=1}x^{i+1}-x\displaystyle\sum^{\infty}_{i=1}\left(\displaystyle\dfrac{x}{2}\right)^i\right)=\dfrac{\pi}{2}-\cos^{-1}\left(\displaystyle\sum^{\infty}_{i=1}\left(-\displaystyle\frac{x}{2}\right)^i-\displaystyle\sum^{\infty}_{i=1}(-x)^i\right) lying in the interval  \left(-\displaystyle\frac{1}{2}, \frac{1}{2}\right) is



Using principal values, evaluate the following
\cos^{-1}(\cos\dfrac{2\pi}{3})+ \sin^{-1}(\sin\dfrac{2\pi}{3})



\dfrac{d}{dx}\sin ^{-1}\left(2x\sqrt{1-x^2}\right)=.......|x|>\dfrac{1}{\sqrt{2}}



Find the value of \sin (\cfrac{1}{4}\sin^{-1}\cfrac{\sqrt 63}{8})



Prove that \tan^{-1}\dfrac{1}{7}+\tan^{-1}\dfrac{1}{13}-\tan^{-1}\dfrac{2}{9}=0



{\sin ^{ - 1}}\sqrt {1 + x + {x^2}}  + {\tan ^{ - 1}}\sqrt {x + {x^2}}  = \frac{\pi }{2}
then\,x =



\tan^{-1}\left(\dfrac{5-x}{6x^2-5x-3}\right).



\cot^{-1} \dfrac {1 - x}{1 + x}.



\tan^{-1}\left(\dfrac{4x}{1+5x^2}\right)+\tan^{-1}\left(\dfrac{2+3x}{3-2x}\right).



Find the value of \sin{\left[\dfrac{1}{2}\cot^{-1}{\left(\dfrac{-3}{4}\right)}\right]}.



Class 12 Engineering Maths Extra Questions