If $$A=\dfrac{1}{1}\cot^{-1}\left(\dfrac{1}{1}\right)+\dfrac{1}{2}\cot^{-1}\left(\dfrac{1}{2}\right)+\dfrac{1}{3}\cot^{-1}\left(\dfrac{1}{3}\right)$$ and $$B=1\cot^{-1}1+2\cot^{-1}2+3\cot^{-1}3$$ then $$|B-A|$$ is equal to $$\dfrac{a\pi}{b}+\dfrac{c}{d}\cot^{-1}3$$ where $$a, b, c, d \in N$$ and are in their lowest form then $$a + b + c+d$$ equal to
Solve the equation: $$\tan^{-1}x+2\cot^{-1}x=\displaystyle\frac{2\pi}{3}$$.
Write the simplest form of $$\tan^{-1}\left (\dfrac {\cos x - \sin x}{\cos x + \sin x}\right ), 0 < x < \dfrac {\pi}{2}$$.
Write $$\tan ^{ -1 }{ \left[ \cfrac { \sqrt { 1+{ x }^{ 2 } } -1 }{ x } \right] } ,x\neq 0$$ in the simplest form.
If $$\sin \left (\sin^{-1} \dfrac {1}{5} + \cos^{-1} x\right ) = 1$$ then find the value of $$x$$.
Inverse circular functions,Principal values of $${ sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x$$. $${ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\frac { x+y }{ 1-xy } $$, $$xy<1$$ $$\pi +{ tan }^{ -1 }\frac { x+y }{ 1-xy } $$, $$xy>1$$. (a) $${ cos }^{ -1 }\left( cos\frac { 7\pi }{ 6 } \right) $$ (b) $${ cos }^{ -1 }\left( cos\frac { 4\pi }{ 3 } \right) $$
Inverse circular functions,Principal values of $${ sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x$$. $${ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\frac { x+y }{ 1-xy } $$, $$xy<1$$ $$\pi +{ tan }^{ -1 }\frac { x+y }{ 1-xy } $$, $$xy>1$$. (a) $${ tan }^{ -1 }\frac { 2mn }{ { m }^{ 2 }-{ n }^{ 2 } } +{ tan }^{ -1 }\frac { 2pq }{ { p }^{ 2 }-{ q }^{ 2 } } ={ tan }^{ -1 }\frac { 2MN }{ { M }^{ 2 }-{ N }^{ 2 } } $$ where $$M=mp-nq,N=np+mq$$ (b) $$\frac { 2 }{ 3 } { tan }^{ -1 }\frac { 3m{ n }^{ 2 }-{ m }^{ 3 } }{ { n }^{ 3 }-3{ m }^{ 2 }n } +\frac { 2 }{ 3 } { tan }^{ -1 }\frac { 3p{ q }^{ 2 }-{ p }^{ 3 } }{ { q }^{ 3 }-3{ p }^{ 2 }q } ={ tan }^{ -1 }\frac { 2MN }{ { M }^{ 2 }-{ N }^{ 2 } } $$ Where $$M=-mp+nq,N=np+mq$$ and all the letters are $$+ive$$ quantities.
Solve the equation $$ \tan^{-1} \sqrt{x^2+x}+\sin^{-1} \sqrt{x^2+x+1}=\dfrac{\pi}{2}$$
If $$ \cot^{-1} \left( \frac{\sqrt{1+ \sin x}+ \sqrt{ 1- \sin x}}{\sqrt{1+\sin x}-\sqrt{1- \sin x}}\right) =\dfrac{x}{m}, x \in \left(0, \frac{\pi}{4}\right)$$.Find $$m$$
If $$(Tan^{-1}x)^2+(Cot^{-1}x)^2=\dfrac{5\pi^2}{8},then$$ x=
find the value of the following: $$(i) \ \sin^{-1}(\frac{-1}{2})$$ $$(ii) \ \cos^{-1}(\frac{\sqrt{3}}{2})$$ $$(iii) \ \text{cosec}^{-1}(2)$$ $$(iv) \ \tan^{-1} ({-\sqrt{3}})$$ $$(v) \ \cos^{-1}(\frac{-1}{2})$$ $$(vi) \tan^{-1} (-1)$$
Differentiate $$\cos^{-1}(4x^{2} -3x); x \epsilon (\frac{1}{2}, 1)$$
Solve the following for $$x:\tan^{-1}\left(\dfrac{x-2}{x-3}\right)+\tan^{-1}\left(\dfrac{x+2}{x+3}\right)=\dfrac{\pi}{4},|x|<1$$
Simplify : $$\cot^{-1} [\sqrt{1 + x^2} - x]$$
Does $$\sin^{-1} \left(\dfrac{2}{\sqrt{5}} \right) = \tan^{-1} (2)$$ & please give value.
Find the domain and range of the real function $$\cfrac { x+2 }{ { x }^{ 2 }-8x-4 } $$
Find the value of $$\sin\left(\dfrac{1}{2}\cot^{-1}\left(-\dfrac{3}{4}\right)\right)$$.
if$$\int \sin^{-1}\left ( \dfrac{2x+2}{\sqrt{4x^2+8x+13}} \right )dx$$$$=(x + 1)tan^{-1}\left ( \dfrac{2x+2}{3}\right )$$+$$\lambda$$$$ln(4x^2+8x+13)$$+$$C$$ then find the value of - 4$$\lambda$$
If $$0< \cos^{-1} x< 1$$ and $$1+\sin (\cos^{-1}x)+\sin^{2}(\cos^{-1}x)+\sin^{3} (\cos^{-1}x)+.........\infty =2,$$ then find $$2\sqrt{3}x.$$
Find the number of values of $$x$$ of the form $$6n$$, where $$n$$ is an integer , in the domain of the function $$f(x)=x\ln|x-1|+\displaystyle \frac{\sqrt{64-x^{2}}}{\sin x}$$
If $$ \displaystyle 0< \cos ^{-1}x< 1 $$ and $$ \displaystyle 1+\sin(\cos^{-1}x)+\sin^{2}(\cos^{-1}x)+\sin^{3}(\cos^{-1}x)+...infinity= 2$$ then the value of $$ \displaystyle 12 x^{2}$$ is
If the domain of the function $$\displaystyle f(x)= \sqrt{3\cos^{-1}(4x)-\pi} $$ is [a,b] then the value of $$ \displaystyle (4a+64b)$$ is
If $$\displaystyle x= \sin^{-1}(a^{6}+1)\cos^{-1}(a^{4}+1)-\tan^{-1}(a^{2}+1),a\epsilon R$$ , then the value of $$\displaystyle \sec^{2}x$$ is
If range of the function $$ \displaystyle f(x)= \sin^{-1}x+2\tan^{-1}x+x^{2}+4x+1$$ is $$[p,q]$$, then the value of $$(p+q)$$ is
The number of real solutions of the equation $$\sin^{-1}\left(\displaystyle\sum^{\infty}_{i=1}x^{i+1}-x\displaystyle\sum^{\infty}_{i=1}\left(\displaystyle\dfrac{x}{2}\right)^i\right)=\dfrac{\pi}{2}-\cos^{-1}\left(\displaystyle\sum^{\infty}_{i=1}\left(-\displaystyle\frac{x}{2}\right)^i-\displaystyle\sum^{\infty}_{i=1}(-x)^i\right)$$ lying in the interval $$\left(-\displaystyle\frac{1}{2}, \frac{1}{2}\right)$$ is
Using principal values, evaluate the following $$\cos^{-1}(\cos\dfrac{2\pi}{3})$$+ $$\sin^{-1}(\sin\dfrac{2\pi}{3})$$