Solve the following pairs of equations by reducing them to a pair of linear equations:
(i) $$\dfrac{1}{2x}+\dfrac{1}{3y}=2 ; \dfrac{1}{3x}+\dfrac{1}{2y}=\dfrac{13}{6}$$
(ii) $$\dfrac{2}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}=2 ; \dfrac{4}{\sqrt{x}}-\dfrac{9}{\sqrt{y}}=-1$$
(iii) $$\dfrac{4}{x}+3y=14 ; \dfrac{3}{x}-4y=23$$
(iv) $$\dfrac{5}{x-1}+\dfrac{1}{y-2}=2 ; \dfrac{6}{x-1}-\dfrac{3}{y-2}=1$$
(v) $$\dfrac{7x-2y}{xy}=5 ; \dfrac{8x+7y}{xy}=15$$
(vi) $$6x + 3y = 6xy ; 2x + 4y = 5xy$$
(vii) $$\dfrac{10}{x+y}+\dfrac{2}{x-y}=4 ; \dfrac{15}{x+y}-\dfrac{5}{x-y}=-2$$
(viii) $$\dfrac{1}{3x+y}+\dfrac{1}{3x-y}=\dfrac{3}{4} ; \dfrac{1}{2(3x+y)}-\dfrac{1}{2(3x-y)}=\dfrac{-1}{8}$$