Sl. | $$p(x)$$ | $$g(x)$$ | $$q(x)$$ | $$r(x)$$ |
i | ? | $$x - 2$$ | $$x^{2} - x + 1$$ | $$4$$ |
ii | ? | $$x + 3$$ | $$2x^{2} + x + 5$$ | $$3x + 1$$ |
iii | ? | $$2x + 1$$ | $$x^{3} + 3x^{2} - x + 1$$ | $$0$$ |
iv | ? | $$x - 1$$ | $$x^{3} - x^{2} - x - 1$$ | $$2x - 4$$ |
v | ? | $$x^{2} + 2x + 1$$ | $$x^{4} - 2x^{2} + 5x - 7$$ | $$4x + 12$$ |
Let $$P(x)$$ be a cubic polynomial with zeroes $$\alpha,\beta,
\gamma$$ if $$\displaystyle \frac{P\left(\dfrac{1}{2}\right)+P\left(-\dfrac{1}{2}\right)}{P(0)}=100 $$find $$ \sqrt{\displaystyle \frac{1}{\alpha\beta}+\frac{1}{\beta\gamma}+\frac{1}{\gamma a}}$$.