Let $$f(x) =\left\{\begin{matrix} x+a & \text{if} \ x < 0 \\ |x-1| & \text{if} \ x \ge 0 \end{matrix}\right.$$ and
$$g(x) = \left\{\begin{matrix} x+1 & \text{if} \ x < 0\\ (x-1)^2+b & \text{if} \ x \ge 0, \end{matrix}\right.$$
Where a and b are non-negative real number. Determine the composite function g o f. if is continuous for all real x, determine the Values of a and b. Further for these values of a and b is g o f differentiable at x=0? Justify your answer