Relations And Functions - Class 12 Engineering Maths - Extra Questions

Show that if $$f:A\rightarrow B$$ and $$g:B\rightarrow C$$ are one-one, then $$g\circ f:A\rightarrow C$$ is also one-one.



Let $$f:R\rightarrow R$$ be defined by $$f(x)={x}^{3}+5$$ then find $${f}^{-1}(x)$$



If the function $$ f:[1,\infty)\rightarrow [1,\infty)$$ is defined by $$ f(x)=2^{x(x-1)}$$,then find $$ f^{-1}(4)$$



Let $$f: R\rightarrow R$$ be defined as $$f(s) = 10x + 7$$. Find the function $$g: R\rightarrow R$$ such that $$gof = fog = 1_{R}$$



Let $$f:R\rightarrow R$$ be defined by $$f(x)=2x+3$$, find $${f}^{-1}(4)$$.



Consider $$f:R - \left\{ - \dfrac{4}{3} \right \} \rightarrow R - \left\{ \dfrac{4}{3} \right \}$$ given by $$f(x) = \dfrac{4x + 3}{3x + 4}$$. Show that $$f$$ is bijective. Find the inverse of $$f$$ and hence if the value of $$f^{-1}(0)$$ is $$A$$ and $$x$$ is $$B$$ such that $$f^{-1} (x) = 2$$, then find $$(A+B)\times100$$.



If $$f(x)=\dfrac{(4x+3)}{(6x-4)}$$, $$x\neq \dfrac{2}{3}$$, show that $$fof(x)=x$$, for all $$x\neq\dfrac{2}{3}$$. What is the inverse of f?



Let $$f: N\rightarrow Y$$ be a function defined as $$f(x)=4x+3$$, where, $$Y=\{y\in N : y=4x+3\ for\ some\ x\in N\}$$, Show that f is invertible. Find the inverse.



Let $$f:N\rightarrow N$$ be a function defined as $$f(x)=4{x}^{2}+12x+15$$. Show that $$f:N\rightarrow S$$ is invertible. Find the inverse of $$f$$ and hence find $${f}^{-1}(31)$$ and $${f}^{-1}(87)$$ .  



Show that $$f:\left[ -1,1 \right] \rightarrow R$$, given by $$f\left( x \right) =\dfrac { x }{ \left( x+2 \right)  } $$ is one-one. Find the inverse of the function $$f:\left[ -1,1 \right] \rightarrow Range\ f.$$



Work out the inverse function for each mapping.

$$x \rightarrow 5 x + 1$$

$$x \rightarrow 3 x - 7$$

$$x \rightarrow \dfrac { x } { 5 } $$

$$x \rightarrow \dfrac { x + 9 } { 4 }$$



Let $$f$$ be any real function and let $$g$$ be a function given by $$g(x)=2x$$. Prove that $$g\circ f=f+f$$.



If $$f:\left (-\dfrac {\pi}{2},\dfrac {\pi}{2}\right)\rightarrow R$$ and $$g:[-1,1]\rightarrow R$$ be defined as $$f(x)=\tan x$$ and $$g(x)=\sqrt{1-{x}^{2}}$$ respectively. Describe $$f\circ g$$ and $$g\circ f$$.



If $$f(x)=2x+5$$ and $$g(x)={x}^{2}+1$$ be two real functions, then describe given functions:
(i) $$f\circ g$$
(ii) $$g\circ f$$
(iii) $$f\circ f$$
(iv) $${f}^{2}$$
Also, show that $$f\circ f\ne {f}^{2}$$.



If $$f(x)=\sqrt{1-x}$$ and $$g(x)=\log _{ e }{ x } $$ are two real functions, then describe functions $$f\circ g$$ and $$g\circ f$$.



If $$f,g:R\rightarrow R$$ be two functions defined as $$f(x)=\left| x \right| +x$$ and $$g(x)=\left| x \right| -x$$ for all $$x\in R$$. Then, find $$f\circ g$$ and $$g\circ f$$. Hence, find $$f\circ g(-3)$$, $$f\circ g (5)$$ and $$g\circ f(-2)$$.



If $$f(x)=\sqrt{x+3}$$ and $$g(x)={x}^{2}+1$$ be two real functions, then find $$f\circ g$$ and $$g\circ f$$.



Let $$A=\left\{ x\in R|-1\le x\le 1 \right\} $$ and let $$f:A\rightarrow A,g:A\rightarrow A$$ be two functions defined by $$f(x)={x}^{2}$$ and $$g(x)=\sin \cfrac { \pi x }{ 2 } $$.Show that $${g}^{-1}$$ exists but $${f}^{-1}$$ does not exist. Also find $${g}^{-1}$$.



Let $$f:\rightarrow R$$, $$g:R\rightarrow R$$ be two functions defined by $$f(x)={x}^{2}+x+1$$ and $$g(x)=1-{x}^{2}$$. Write $$f\circ g(-2)$$.



If $$f:\left\{ 5,6 \right\} \rightarrow \left\{ 2,3 \right\} $$ and $$g:\left\{ 2,3 \right\} \rightarrow \left\{ 5,6 \right\} $$ are given by $$f=\left\{ \left( 5,2 \right) ,\left( 6,3 \right)  \right\} $$ and $$g=\left\{ \left( 2,5 \right) ,\left( 3,6 \right)  \right\} $$, find $$f\circ g$$.



Let f(x) be a continuous and g(x) is a discontinuous function then prove that f(x)+g(x) is discontinuous at x=a 



If  $$f$$  is an invertible function, define as  $$f\left ( x \right )=\cfrac{3x-4}{5}$$, write  $$f^{-1}\left ( x \right )$$.



If $$A=\left\{a,b,c,d \right\}$$ and $$f=\left\{(a,b),(b,d),(c,a),(d,c)\right\}$$, show that $$f$$ is one-one from $$A$$ onto $$A$$. Find $$f^{-1}$$



Let $$f:R\to R$$ be the function defined by $$f(x)=4x-3\forall x\in R$$. Then write $$f^{-1}$$.



Show that $$f;[-1,1]\rightarrow R$$, given by $$f(x)=\dfrac{x}{(x+2)}$$ is one-one. Find the inverse of the function $$f;[-1,1]\rightarrow $$ Range $$f$$.
(Hint: For $$y\in $$ Range, $$f, y=f(x)=\dfrac{x}{x+2}$$ for some $$x$$ in $$[-1,1]$$
$$x=\dfrac{2y}{(1-y)}$$



Consider $$f:R\rightarrow R$$ given by $$f(x)=4x+3$$. Show that $$f$$ is invertible. Find the inverse of $$f$$.



Consider $$f : R - \left \{ -\dfrac{4}{3} \right \} \rightarrow R - \left \{ \dfrac{4}{3} \right \}$$ given by $$f(x) = \dfrac{4x + 3}{3x + 4}.$$ Show that f is
bijective. Find the inverse of f and hence find $$f^{-1} (0)$$ and x such that $$f^{-1}(x) = 2.$$



Prove that the function $$f : N \to N, $$ defined by $$f(x) = x^2 + x + 1$$ is one-one but not onto. Find inverse of $$f : N \to S$$, where $$S$$ is range of $$f$$. 



Let $$g$$ be a real valued differentiable function on $$R$$ such that $$g(x) = 3e^{x-2}+4\displaystyle\int_{2}^{x}\sqrt{2t^{2}+6t+5}dt \quad\forall x \in  R$$ and let $$g^{-1}$$ be the inverse function of $$g$$. If $$(g^{-1})' (3)$$ is equal to $$\dfrac{p}{q}$$ where $$p$$ and $$q$$ are relatively prime, then find $$\dfrac{p+q}{6}$$



Let $$A = R - \left \{3\right \}$$ and $$B = R - \left \{1\right \}$$. Consider the function $$f: A\rightarrow B$$ defined by $$f(x) = \left (\dfrac {x - 2}{x - 3}\right )$$ Show that f is one-one and onto and hence find $$f^{-1}$$



Let $$f$$ be a real function given by $$f(x)=\sqrt{x-2}$$. Find the following.
(i) $$f\circ f$$  (ii) $$f\circ f\circ f$$  (iii) $$(f\circ f\circ f)(38)$$   (iv) $${f}^{2}$$
Also, show that $$f\circ f\ne {f}^{2}$$.



If $$f:R\rightarrow R$$ be defined by $$f(x)={x}^{3}-3$$, then prove that $${f}^{-1}$$ exists and find a formula for $${f}^{-1}$$. Hence, find $${f}^{-1}(24)$$ and $${f}^{-1}(5)$$.



Let $$f:N\rightarrow N$$ be a function defined as $$f(x)=9{x}^{2}+6x-5$$. Show that $$f:N\rightarrow S$$, where $$S$$ is the range of $$f$$, is invertible. Find the inverse of $$f$$ and hence find $${f}^{-1}(43)$$ and $${f}^{-1}(163)$$.



Let $$f(x) =\left\{\begin{matrix} x+a & \text{if} \ x < 0 \\ |x-1| & \text{if} \ x \ge 0 \end{matrix}\right.$$ and
$$g(x) = \left\{\begin{matrix} x+1 & \text{if} \ x < 0\\ (x-1)^2+b & \text{if} \ x \ge 0, \end{matrix}\right.$$
Where a and b are non-negative real number. Determine the composite function g o f. if is continuous for all real x, determine the Values of a and b. Further for these values of a and b is g o f differentiable at x=0? Justify your answer 



Class 12 Engineering Maths Extra Questions