CBSE Questions for Class 10 Maths Areas Related To Cricles Quiz 3 - MCQExams.com

Size of a tile is $$9$$ inches by $$9$$ inches. The number of tiles needed to cover a floor of $$12$$ feet by $$18$$ feet is
  • $$384$$
  • $$32$$
  • $$24$$
  • $$216$$
The portion of a circle between two radii and an arc is called  
  • Sector
  • Segment
  • Chord
  • Secant
Find the area of portion between the 2 semicircles.
445534_42cd8a33c39d4903a09f66a08b59b2b4.png
  • $$\displaystyle \frac { \pi }{ 2 } { \left( 28 \right) }^{ 2 }$$
  • $$\displaystyle \frac { \pi }{ 2 } { \left( \frac { 28 }{ 2 } \right) }^{ 2 }$$
  • $$\displaystyle \frac { \pi }{ 2 } { \left( 28 \right) }^{ 2 }-\dfrac{\pi}{2}{ \left( \frac { 28 }{ 2 } \right) }^{ 2 }$$
  • None
Arc of a sector is equal to-
  • Length of arc $$\times$$ radius
  • $$ \displaystyle \frac{sector angle}{360^{\circ}}\times circumference of circle $$
  • $$ \displaystyle \frac{sector angle}{360^{\circ}}\times (area of circle) $$
  • None of these
In given figure, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB then CD is equal to
426539_3d5da211380d463b8ecb666377608e26.png
  • 2 cm
  • 3 cm
  • 4 cm
  • 5 cm
Area of shaded figure is

415828.bmp
  • 2400 sq m
  • 48 sq m
  • 50 sq m
  • 98 sq m
Tick the correct answer in the following:
Area of a sector of angle $$\theta$$ (in degrees) of a circle with radius R is
  • $$\dfrac {\theta}{180}\times 2\pi R$$
  • $$\dfrac {\theta}{180}\times \pi R^{2}$$
  • $$\dfrac {\theta}{3600}\times 2\pi R$$
  • $$\dfrac {\theta}{720}\times 2\pi R^{2}$$
What is the area of a sector with a central angle of $$100$$ degrees and a radius of $$5$$? (Use $$\pi = 3.14$$)
  • $$21.80$$
  • $$11.56$$
  • $$12.46$$
  • $$15.75$$
Find the area of a sector in radians whose central angle is $$45^o$$ and radius is $$2$$.
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{6}$$
Find the area of the shaded segment(in sq. units)

476856.png
  • $$88.5$$
  • $$90.5$$
  • $$86.5$$
  • $$89$$
What is the length of the arc?

476867.png
  • $$20.445$$ ft
  • $$40.445$$ ft
  • $$60.5$$ ft
  • $$80.445$$ ft
Length of the arc $$DE$$ = ?

476873.PNG
  • $$22.32 m$$
  • $$12.32 m$$
  • $$24.12 m$$
  • $$10.45 m$$
What is the length of the given arc?

476872.png
  • $$18.26$$ km
  • $$28.26$$ km
  • $$38.26$$ km
  • $$48.26$$ km
The area of a sector is $$120\pi$$ and the arc measure is $$160^o$$. What is the radius of the circle?
  • $$16.43$$
  • $$11.43$$
  • $$12.23$$
  • $$10.43$$
What is the area of the sector?

476860.png
  • 170 $$cm^2$$
  • 100 $$cm^2$$
  • 110 $$cm^2$$
  • 130 $$cm^2$$
Determine the length of the arc $$ADC$$.

476871.PNG
  • $$65.2 ft$$
  • $$75.4 ft$$
  • $$86.1 ft$$
  • $$90.2 ft$$
Find the arc length of the sector.

476865.png
  • $$3\pi$$
  • $$2\pi$$
  • $$\pi$$
  • $$\frac{\pi}{2}$$
Determine the area of the shaded segment.

476861.png
  • $$10$$
  • $$11$$
  • $$12$$
  • $$13$$
Calculate the area of a segment of a circle with a central angle of $$165$$ degrees and a radius of $$4$$. Express answer to nearest integer.
  • $$10$$
  • $$20$$
  • $$30$$
  • $$40$$
Calculate the arc length for the given diagram.

476878.PNG
  • $$1.23\text{ in}$$
  • $$2.23\text{ in}$$
  • $$4.23\text{ in}$$
  • $$5.23\text{ in}$$
Points $$A$$ and $$B$$ lie on circle with centre $$O$$ (not shown). $$AO=3$$ and $$\angle AOB ={120}^{\circ}$$. Find the area of  sector $$AOB.$$
  • $$\dfrac{\pi}{3}$$
  • $$\pi$$
  • $$3 \pi$$
  • $$9 \pi$$
In the figure, $$ABCD$$ is a rectangular and $$\angle F = 90^{\circ}$$. If $$\overline{FD}=\overline{DC}, \overline{AB}=6$$, and the perimeter of rectangular $$ABCD$$ is $$30$$, Calculate $$\overline{FA}$$
478535.PNG
  • $$6$$
  • $$3\sqrt{5}$$
  • $$8$$
  • $$5\sqrt{3}$$
The length of the arc $$OP$$ is

476877.PNG
  • $$16.28 cm$$
  • $$12.28 cm$$
  • $$15.28 cm$$
  • $$19.28 cm$$
The trapezoid is divided into a rectangle and two triangles as shown in the above figure. Find the combined area of the two shaded triangles. ( All lengths are in inches)
484358.PNG
  • $$4$$
  • $$6$$
  • $$9$$
  • $$12$$
  • $$14$$
What is the area of the shaded segment?

476935.png
  • $$1$$ $$m^2$$
  • $$2$$ $$m^2$$
  • $$3$$ $$m^2$$
  • $$4$$ $$m^2$$
Find the area of the shaded segment.

476934.png
  • $$11$$
  • $$12$$
  • $$13$$
  • $$14$$
In figure, if the area of square $$ABCD$$ is $$5$$, calculate the area of square $$BEFD$$.
493006.jpg
  • $$7.07$$
  • $$8.25$$
  • $$10.00$$
  • $$12.50$$
  • $$25.00$$
In Figure 5, rectangle $$ABCD$$ is inscribed in a circle. If the radius of the circle is $$2$$ and $$\overline{CD} = 2$$, find the area of the shaded region.

492753_4e30a9bc44fd4d88ae834d627d6e7075.png
  • $$0.362$$
  • $$0.471$$
  • $$0.577$$
  • $$0.707$$
  • $$0.866$$
The geometric figure consists of a right triangle and $$2$$ semicircles. Find the area of the triangle if the diameter of the two circles are $$ 25 \ m $$ and $$ 12 \ m$$ respectively.
484975.PNG
  • $$150 \ m^2$$
  • $$140 \ m^2$$
  • $$142 m^2$$
  • $$117 m^2$$
  • $$15 m ^2$$
$$ABCD$$ is a square of side $$1$$ unit and $$B, D$$ are centers of two circles of radius $$1\ unit$$. Find the area of the portion which is common to both circles
507062_86530b310d3c4db695fd88489f9fb03c.png
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {\pi}{4} - \dfrac {1}{2}$$
  • $$\dfrac {\pi}{2} - 1$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers