Explanation
Here, first term $$a=5\displaystyle \frac12=\frac{11}2$$ and the common difference $$d=11-\displaystyle \frac{11}2=\frac{11}2.$$
Given, $$a_n=x=550$$$$\Rightarrow a+(n-1)d=550$$
$$\Rightarrow \dfrac{11}2+(n-1)\times\dfrac{11}2=550$$
$$\Rightarrow 1+(n-1)=550\times\dfrac2{11}$$
$$\Rightarrow n=100$$
The given sequence is an AP in which first term $$a=84$$ and common difference $$d=-4$$.
We have to find value of n for which $$a_n$$ is $$0$$.
Then,$$a+(n-1)d=0$$$$\Rightarrow 84+(n-1)\times-4=0$$$$\Rightarrow 88-4n=0$$
$${\textbf{Step 1: Write multiple of 9 as A}}{\text{.P}}{\textbf{. having common difference as 9.}}$$
$${\text{Multiple of 9 between 300 and 700 are as follows:}}$$
$$306,315,324, \ldots ,693$$
$${\text{So, the formed A}}{\text{.P}}{\text{. is}}$$ $$306,315,324, \ldots ,693$$
$${\text{Where,}}$$ $$a = 306:$$ $${\text{First term of A}}{\text{.P}}{\text{.}}$$
$$d = 9:$$ $${\text{common difference of A}}{\text{.P}}{\text{.}}$$
$$l = 639:$$ $${\text{Last term of A}}{\text{.P}}{\text{.}}$$
$${\text{Now we know that, formula for }}{{\text{n}}^{{\text{th}}}}{\text{ term of an A}}{\text{.P}}{\text{. is given by,}}$$
$${a_n} = a + \left( {n - 1} \right)d \ldots \left( 1 \right)$$
$${\text{Where,}}$$ $$a = $$ $${\text{First term of A}}{\text{.P}}{\text{.,}}$$ $$d = $$ $${\text{common difference of A}}{\text{.P}}{\text{.,}}$$ $${a_n} = $$ $${{\text{n}}^{{\text{th}}}}{\text{term of an A}}{\text{.P}}{\text{.}}$$
$$n = $$ $${\text{Total number of terms in A}}{\text{.P}}{\text{.}}$$
$${\text{Substitute the known values in equation }}\left( 1 \right)$$
$$ \Rightarrow 693 = 306 + \left( {n - 1} \right)9$$
$$ \Rightarrow 693 - 306 = \left( {n - 1} \right)9$$
$$ \Rightarrow 387 = \left( {n - 1} \right)9$$
$$ \Rightarrow \left( {n - 1} \right) = \dfrac{{387}}{9}$$
$$ \Rightarrow n - 1 = 43$$
$$ \Rightarrow n = 44$$
$${\text{There are total 44 numbers between 300 to 700 which are multiple of 9}}{\text{.}}$$
$${\textbf{Step 2: Find the sum of multiple of 9 lying between 300 to 700.}}$$
$${\text{Sum of the n terms of an A}}{\text{.P}}{\text{. having first term 'a' and last term 'l' is given by, }}$$
$${S_n} = \dfrac{n}{2}\left( {a + l} \right)$$
$$ \Rightarrow {S_{44}} = \dfrac{{44}}{2}\left( {306 + 693} \right)$$
$$ \Rightarrow {S_{44}} = 22\left( {999} \right)$$
$$ \Rightarrow {S_{44}} = 21978$$
$${\textbf{Final Answer: Hence, sum of all multiple of 9 lying between 300 to 700 is 21978.}}$$
$${\textbf{Therefore, option (A) 21978 is correct answer.}}$$
Please disable the adBlock and continue. Thank you.