CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 10 - MCQExams.com

$$\csc (90 - \theta) = $$ is equivalent to
454072.png
  • $$\sec \theta$$
  • $$\sin \theta$$
  • $$\cos \theta$$
  • None of these
Solve: $$\sec 70^{\circ} \sin 20^{\circ} + \cos 20^{\circ} \text{cosec } 70^{\circ} $$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
If $$A$$ and $$B$$ are complementary angles, then $$\sin A \times \sec B =$$
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$2$$
$$\tan 5^{\circ} \tan 25^{\circ} \tan 30^{\circ} \tan 65^{\circ} \tan 85^{\circ} =$$
  • $$1$$
  • $$\dfrac {1}{2}$$
  • $$\sqrt {3}$$
  • $$\dfrac {1}{\sqrt {3}}$$
$$\cot (90^{\circ} - \theta) $$ is equivalent to
  • $$\cot \theta$$
  • $$\cos \theta$$
  • $$\tan \theta$$
  • $$-\tan \theta$$
$$\text{cosec } (75^{\circ} + \theta) - \sec (15^{\circ} - \theta) =$$
  • $$2\sec \theta$$
  • $$2 cosec \theta$$
  • $$0$$
  • $$1$$
If $$\tan 2A = \cot (A - 21^{\circ})$$, where $$2A$$ is an acute angle, then $$\angle A =$$ ____
  • $$24^{\circ}$$
  • $$27^{\circ}$$
  • $$35^{\circ}$$
  • $$37^{\circ}$$
$$\sin^{2} 20^{\circ} + \sin^{2} 70^\circ=$$?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Evaluate: $$\dfrac {\tan 35^{\circ}}{\cot 55^{\circ}} + \dfrac {\cot 78^{\circ}}{\tan 12^{\circ}} = $$
  • $$0$$
  • $$1$$
  • $$2$$
  • None of these
If $$\sin 15^{\circ} = \cos (n\times15^{\circ})$$, then $$n = .....$$
  • $$1$$
  • $$2$$
  • $$5$$
  • $$0$$
$$\cot 1^{\circ} \cot 2^{\circ} ...... \cot 89^{\circ} = $$
  • $$\dfrac {1}{2}$$
  • $$1$$
  • $$0$$
  • $$-1$$
Without trigonometric table, evaluate $$\dfrac {\cot 63^{\circ}}{\tan 27^{\circ}}$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$-2$$
Find the value of $$\tan 10^{\circ} \tan 15^{\circ} \tan 75^{\circ} \tan 80^{\circ} $$
  • $$\dfrac {1}{16}$$
  • $$0$$
  • $$1$$
  • None of these
$$\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 89^{\circ} = $$
  • $$1$$
  • $$-1$$
  • $$0$$
  • None of above
Without trigonometric table, evaluate $$\dfrac {\sec 41^o}{\text{cosec } 49^o}$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$-2$$
Find the value of $$\cos^2 \theta (1 + \tan^2 \theta) + \sin^2 \theta (1 + \cot^2 \theta)$$.
  • $$1$$
  • $$3$$
  • $$2$$
  • $$4$$
$$\sin 81^{\circ} + \tan 81^{\circ}$$, when expressed in terms of angles between $$0^{\circ}$$ and $$45^{\circ}$$, becomes
  • $$\sin 9^{\circ} + \cos 9^{\circ}$$
  • $$\cos 9^{\circ} + \tan 9^{\circ}$$
  • $$\sin 9^{\circ} + \tan 9^{\circ}$$
  • $$\cos 9^{\circ} + \cot 9^{\circ}$$
Find the value of : $$\dfrac {\cos 38^{\circ} \csc 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} =$$
  • $$\sqrt {3}$$
  • $$\dfrac {1}{3}$$
  • $$\dfrac {1}{\sqrt {3}}$$
  • $$\dfrac {2}{\sqrt {3}}$$
Evaluate: $$\dfrac {\tan 30^{\circ}}{\cot 60^{\circ}}$$
  • $$\dfrac {1}{\sqrt {2}}$$
  • $$\dfrac {1}{\sqrt {3}}$$
  • $$\sqrt {3}$$
  • $$1$$
Find the name of the person who first produce a table for solving a triangle's length and angles.
  • William Rowan Hamilton
  • Hipparchus
  • Euclid
  • Issac Newton
What is the meaning of trigonometry in Greek language?
  • Measurement
  • Triangle Measure
  • Angle Measure
  • Degree Measure
If $$A + B = 90^o$$, then ......
  • $$\sin A = \sin B$$
  • $$\cos A = \cos B$$
  • $$\tan A = \tan B$$
  • $$\sec A = \text{cosec } B$$
$$\dfrac {\cos (90 -\theta) \sec (90 - \theta)\tan \theta}{\text{cosec } (90 - \theta)\sin (90 - \theta) \cot (90 - \theta)} + \dfrac {\tan (90 - \theta)}{\cot \theta} = ......$$
  • $$1$$
  • $$-1$$
  • $$2$$
  • $$-2$$
In the 5th century who created the table of chords with increasing 1 degree?
  • Hipparchus
  • William Rowan Hamilton
  • Euclid
  • Ptolemy
The value of $$\cot 1^{\circ} \cot 2^{\circ} .... \cot 89^{\circ}$$ is .....
  • $$1$$
  • $$0$$
  • $$-1$$
  • None of above
If $$\cos\theta = \dfrac{14}{4}$$ and $$\sin\theta$$ $$=$$ $$\dfrac{8}{3}$$, what is the value of $$\cot\theta$$?
  • $$\dfrac{11}{16}$$
  • $$\dfrac{13}{16}$$
  • $$\dfrac{16}{21}$$
  • $$\dfrac{21}{16}$$
If $$\cos\theta = \dfrac{2}{21}$$ and $$\sin\theta = \dfrac{6}{7}$$, what is the value of $$\tan\theta$$?
  • $$4$$
  • $$9$$
  • $$6$$
  • $$7$$
If $$t = 45^{\circ}$$, what is $$\sec (t) \sin (t) - \mathrm{cosec} (t) \cos (t)$$?
  • $$-2$$
  • $$-1$$
  • $$0$$
  • $$\dfrac {\pi}{2}$$
  • None of the above
If $$\sin \theta + \cos \theta = \sqrt {2}$$, find the value of $$\sin \theta \times \cos \theta$$.
  • $$2$$
  • $$\sqrt {2} - 1$$
  • $$\dfrac {1}{2}$$
  • $$2\sec \theta$$
In the following figure $$AB \perp BC$$ and $$\angle ACB = 30^\circ$$, given $$BC = \sqrt{300}\ m$$. The length of $$AB$$ is
610549_d7c4f1ee20754cdfa28a3bb7672cf40a.png
  • $$10\ m$$
  • $$100\ m$$
  • $$10 \sqrt 3\ m$$
  • $$100 \sqrt 3\ m$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers