CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 3 - MCQExams.com

If $$\tan \theta +\cot \theta =3$$, then $$\tan^{4}\theta+\cot^{4}\theta=$$
  • 47
  • 162
  • 24
  • 48
If $$\cos x + \sec x = - 2$$ for a positive odd integer $$n$$ then $$\cos^nx + \sec^nx$$ is
  • $$1$$
  • $$-1$$
  • $$-2$$
  • $$2$$

If $$\sqrt{\sin x}+\cos x=0$$, then $$\sin x=$$
  • $$\displaystyle \frac{\sqrt{5}+1}{2}$$
  • $$\displaystyle \frac{\sqrt{5}+1}{8}$$
  • $$\displaystyle \frac{\sqrt{5}-1}{8}$$
  • $$\displaystyle \frac{\sqrt{5}-1}{2}$$
Eiminate $$\theta$$ from $$ x= 1+\tan\theta,y= 2+\cot\theta$$
  • $$xy+1=x+y$$
  • $$xy+2=2x+y$$
  • $$xy+1=2x+y$$
  • $$1=2y+x$$
The maximum value of
$$\cos x\,\left(\displaystyle \dfrac{\cos x}{1-\sin x}+\dfrac{1-\sin x}{\cos x}\right)$$ is 
  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
The value of the expression $$\text{cosec }(75^0+\theta) - \sec (15^0 - \theta) - \tan (55^0 + \theta) + \cot (35^0 - \theta)$$, is
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$\dfrac{3}{2}$$
$$\sin \left ( 45^{0}+\theta  \right )-\cos\left ( 45^{0}-\theta  \right )$$ is equal to
  • $$2 \cos \theta$$
  • $$0$$
  • $$2 \sin \theta$$
  • $$1$$
If $$\displaystyle \sec\alpha=5x+\frac{1}{20x} $$, then $$\sec\alpha+\tan\alpha$$ is equal to
  • $$5x$$
  • $$\displaystyle \frac{1}{20x}$$
  • $$10x$$ or $$ -\displaystyle \frac{1}{10x}$$
  • $$10\displaystyle x$$ or $$\dfrac{1}{10x}$$
If $$x.cos A = 1$$ and $$tan A = y$$, then $$x^{2} - y^{2}$$ is equal to :
  • $$\tan A$$
  • $$1$$
  • $$sinA$$
  • $$-\tan A$$
In the given figure, $$ \triangle  ABC$$ is right angled at B and $$\cot A = \dfrac{3}{4}$$ . If $$AC =10$$cm, then the length of $$AB$$ is:

83236_c2aa4f2ddc7d4387aa1de740b0531195.png
  • $$3$$cm
  • $$4$$cm
  • $$6$$cm
  • $$8$$cm
The value of $$sin^{2}30^{\circ}$$ - $$cos^{2}30^{\circ}$$ is:
  • $$-\dfrac{1}{2}$$
  • $$\dfrac{\sqrt{3}}{2}$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{2}{3}$$
If $$\cos\theta =\dfrac{2}{3}$$, then the value of $$ 2\sec\theta +4\tan^{2}\theta -7$$ is equal to
  • $$1$$
  • $$0$$
  • $$3$$
  • $$4$$
If $$ 3\cos\theta =2\sin\theta $$, then the value of $$ \dfrac{4\sin\theta -3\cos\theta }{2\sin\theta +6\cos\theta }$$ is:
  • $$\dfrac{1}{8}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{4}$$
If $$\tan A =\cfrac{5}{12}$$, find the value of $$(\sin A+ \cos A) \times \sec A$$:
  • $$\dfrac{6}{13}$$
  • $$\dfrac{7}{12}$$
  • $$\dfrac{17}{12}$$
  • $$\dfrac{12}{17}$$
The value of tan$$1^{\circ}.tan2^{\circ}.tan3^{\circ}.......... tan89^{\circ}$$ is :
  • 0
  • 1
  • 2
  • $$\dfrac{1}{2}$$
If sin$$\Theta$$  = cos$$\Theta$$, then the value of $$\Theta$$ is :
  • $$0^{\circ}$$
  • $$45^{\circ}$$
  • $$60^{\circ}$$
  • $$30^{\circ}$$
The value of $$\dfrac{tan 45^{\circ}}{sin30^{\circ}+cos 60^{\circ}}$$ is :
  • $$\dfrac{1}{\sqrt{2}}$$
  • 1
  • $$\dfrac{1}{2}$$
  • $$\sqrt{2}$$
Simplify:$$\displaystyle \dfrac {\cos 60^0+\sin 60^0}{\cos 60^0-\sin 60^0}$$
  • $$\sqrt 3-2$$
  • $$\sqrt 3+2$$
  • $$-(\sqrt 3+2)$$
  • $$1$$
  • $$0$$
In the figure given below, $$\Delta ABC$$ is right angled at B and tan$$A=\dfrac{4}{3}.$$ If $$AC=15$$ cm, then the length of BC is :

83560_80be1af847604349bd0f44a54ceb4a5b.jpg
  • $$4$$ cm
  • $$3$$ cm
  • $$12$$ cm
  • $$9$$ cm
Which one of the following is correct ?

  • $$sec^2\alpha=1-tan^2 \alpha$$
  • $$sin^2\alpha=1+cos^2\alpha$$
  • $$tan \alpha cot \alpha=1$$
  • None of these
$$\tan 9^o\times \tan 27^o\times \tan 63^o\times \tan 81^o=$$

  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
If $$\tan30^0=x, \tan 45^0=y, \tan 60^0=z,$$ then which of the following is/are correct?
  • $$x+y=z$$
  • $$xy=z$$
  • $$xz=y$$
  • $$y+z=x$$
The value of x from the equation

$$\dfrac{x}{cos45^0.sin60^0}=tan^2 60^0 - tan^2 30^0$$, is
  • 3
  • 2
  • 1
  • None of these
The value of $$\sec$$ $$(90^0 - \theta) \sin \theta$$ is


  • $$\sec \theta$$
  • $$\csc \theta$$
  • $$ \tan \theta$$
  • $$1$$
The value of $$\sin^2q. \cos^2q (\sec^2q+\text cosec^2q)$$ is
  • $$2$$
  • $$4$$
  • $$1$$
  • $$0$$
The value of $$\sin^6q+\cos^6q+3 \sin^2q \cos^2q$$ is-
  • $$0$$
  • $$1$$
  • $$2\sin q \cos q$$
  • $$\sin^4q +\cos^4q$$
$$\left [ \cfrac{1+tan \theta}{1+cot \theta} \right ]^{4}$$ is equal to
  • $$\left ( \cfrac{1+tan^{2} \theta}{1+cot^{2} \theta} \right )^{2}$$
  • $$\left ( \cfrac{1+cot \theta}{1+tan \theta} \right )^{2}$$
  • $$\left ( \cfrac{1+tan \theta}{1-cot \theta} \right )^{2}$$
  • $$\left ( \cfrac{1-cot^{2} \theta}{1+tan^{2} \theta} \right )^{2}$$
The value of 
 $$32  { \cot }^{ 2 }{ 45 }^{ \circ  }-8  { \sec }^{ 2 }{ 60 }^{ \circ  }+8  { \cos }^{ 3 }{ 30 }^{ \circ  }\\$$

  • $$3\sqrt{3}$$
  • $$2\sqrt{3}$$
  • $$\sqrt{3}$$
  • $$6\sqrt{3}$$
$$cot\theta + tan\theta =$$
  • $$\dfrac {1}{sin\theta cos\theta}$$
  • $$sec\theta cosec\theta$$
  • $$cot\theta sec^2\theta$$
  • all of these
In the given figure, the side $$PQ$$ (in cm) is

98715_fe04325f97a547399b1a9cb2d569ab23.png
  • $$25$$
  • $$50$$
  • $$75$$
  • $$80$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers