Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 3 - MCQExams.com

If tanθ+cotθ=3, then tan4θ+cot4θ=
  • 47
  • 162
  • 24
  • 48
If cosx+secx=2 for a positive odd integer n then cosnx+secnx is
  • 1
  • 1
  • 2
  • 2

If sinx+cosx=0, then sinx=
  • 5+12
  • 5+18
  • 518
  • 512
Eiminate θ from x=1+tanθ,y=2+cotθ
  • xy+1=x+y
  • xy+2=2x+y
  • xy+1=2x+y
  • 1=2y+x
The maximum value of
cosx(cosx1sinx+1sinxcosx) is 
  • 4
  • 3
  • 2
  • 1
The value of the expression cosec (750+θ)sec(150θ)tan(550+θ)+cot(350θ), is
  • 1
  • 0
  • 1
  • 32
sin(450+θ)cos(450θ) is equal to
  • 2cosθ
  • 0
  • 2sinθ
  • 1
If secα=5x+120x, then secα+tanα is equal to
  • 5x
  • 120x
  • 10x or 110x
  • 10x or 110x
If x.cosA=1 and tanA=y, then x2y2 is equal to :
  • tanA
  • 1
  • sinA
  • tanA
In the given figure, ABC is right angled at B and cotA=34 . If AC=10cm, then the length of AB is:

83236_c2aa4f2ddc7d4387aa1de740b0531195.png
  • 3cm
  • 4cm
  • 6cm
  • 8cm
The value of sin230 - cos230 is:
  • 12
  • 32
  • 32
  • 23
If \cos\theta =\dfrac{2}{3}, then the value of 2\sec\theta +4\tan^{2}\theta -7 is equal to
  • 1
  • 0
  • 3
  • 4
If 3\cos\theta =2\sin\theta , then the value of \dfrac{4\sin\theta -3\cos\theta }{2\sin\theta +6\cos\theta } is:
  • \dfrac{1}{8}
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{1}{4}
If \tan A =\cfrac{5}{12}, find the value of (\sin A+ \cos A) \times \sec A:
  • \dfrac{6}{13}
  • \dfrac{7}{12}
  • \dfrac{17}{12}
  • \dfrac{12}{17}
The value of tan1^{\circ}.tan2^{\circ}.tan3^{\circ}.......... tan89^{\circ} is :
  • 0
  • 1
  • 2
  • \dfrac{1}{2}
If sin\Theta  = cos\Theta, then the value of \Theta is :
  • 0^{\circ}
  • 45^{\circ}
  • 60^{\circ}
  • 30^{\circ}
The value of \dfrac{tan 45^{\circ}}{sin30^{\circ}+cos 60^{\circ}} is :
  • \dfrac{1}{\sqrt{2}}
  • 1
  • \dfrac{1}{2}
  • \sqrt{2}
Simplify:\displaystyle \dfrac {\cos 60^0+\sin 60^0}{\cos 60^0-\sin 60^0}
  • \sqrt 3-2
  • \sqrt 3+2
  • -(\sqrt 3+2)
  • 1
  • 0
In the figure given below, \Delta ABC is right angled at B and tanA=\dfrac{4}{3}. If AC=15 cm, then the length of BC is :

83560_80be1af847604349bd0f44a54ceb4a5b.jpg
  • 4 cm
  • 3 cm
  • 12 cm
  • 9 cm
Which one of the following is correct ?

  • sec^2\alpha=1-tan^2 \alpha
  • sin^2\alpha=1+cos^2\alpha
  • tan \alpha cot \alpha=1
  • None of these
\tan 9^o\times \tan 27^o\times \tan 63^o\times \tan 81^o=

  • 4
  • 3
  • 2
  • 1
If \tan30^0=x, \tan 45^0=y, \tan 60^0=z, then which of the following is/are correct?
  • x+y=z
  • xy=z
  • xz=y
  • y+z=x
The value of x from the equation

\dfrac{x}{cos45^0.sin60^0}=tan^2 60^0 - tan^2 30^0, is
  • 3
  • 2
  • 1
  • None of these
The value of \sec (90^0 - \theta) \sin \theta is


  • \sec \theta
  • \csc \theta
  • \tan \theta
  • 1
The value of \sin^2q. \cos^2q (\sec^2q+\text cosec^2q) is
  • 2
  • 4
  • 1
  • 0
The value of \sin^6q+\cos^6q+3 \sin^2q \cos^2q is-
  • 0
  • 1
  • 2\sin q \cos q
  • \sin^4q +\cos^4q
\left [ \cfrac{1+tan \theta}{1+cot \theta} \right ]^{4} is equal to
  • \left ( \cfrac{1+tan^{2} \theta}{1+cot^{2} \theta} \right )^{2}
  • \left ( \cfrac{1+cot \theta}{1+tan \theta} \right )^{2}
  • \left ( \cfrac{1+tan \theta}{1-cot \theta} \right )^{2}
  • \left ( \cfrac{1-cot^{2} \theta}{1+tan^{2} \theta} \right )^{2}
The value of 
 32  { \cot }^{ 2 }{ 45 }^{ \circ  }-8  { \sec }^{ 2 }{ 60 }^{ \circ  }+8  { \cos }^{ 3 }{ 30 }^{ \circ  }\\

  • 3\sqrt{3}
  • 2\sqrt{3}
  • \sqrt{3}
  • 6\sqrt{3}
cot\theta + tan\theta =
  • \dfrac {1}{sin\theta cos\theta}
  • sec\theta cosec\theta
  • cot\theta sec^2\theta
  • all of these
In the given figure, the side PQ (in cm) is

98715_fe04325f97a547399b1a9cb2d569ab23.png
  • 25
  • 50
  • 75
  • 80
0:0:4


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers