Explanation
Step -1: Rewrite the given equation as quadratic equation in Sinx by applying Standard Trigonometric Identity
Consider,
√sinx+cosx=0
⇒√sinx=−cosx
Squaring on both sides, we get
(√sinx)2=(−cosx)2
⇒sinx=cos2x…(1)
As we know that,
sin2x+cos2x=1
⇒cos2x=1−sin2x (Substitute this value in equation (1))
⇒sinx=1−sin2x
⇒sin2x+sinx−1=0…(2)
Step -2: Solving equation(2) for sinx.
If ax2+bx+c=0 is a quadratic equation then roots of the equation are,
x=−b±√b2−4ac2a
So, comparing it with equation (2) we get,
a=1,b=1,c=−1
∴sinx=−1±√(1)2−4(1)(−1)2(1)
⇒sinx=−1±√52
⇒sinx=−1−√52 or sinx=−1+√52
⇒sinx=√5−12
∵−1−√52<−1,Therefore, the other value is unacceptable.
Hence, option (D) √5−12 is the correct answer.
Please disable the adBlock and continue. Thank you.