Explanation
Using,
$$\tan x=\cot \left( 90^{\circ}-x \right) $$ and $$\tan x.\cot x=1$$
We get ,
$$\tan 5.\tan 10.\tan 15...\tan 80.\tan 85\\ =\tan 5.\tan 10.\tan 15...\tan 45. \cot(90-35)...\cot \left( 90-10 \right) .\cot \left( 90-5 \right) \\ =\tan 5.\cot 5.\tan 10.\cot 10...\tan 45\\ =1$$
In $$\triangle ABC$$, $$BC = 15$$, $$\sin B = \dfrac {4}{5}$$ Now, $$\sin B = \dfrac {P}{H}$$ $$\dfrac {4}{5} = \dfrac {AC}{AB}$$ Then, let $$AC = 4x$$ and $$AB = 5x$$ Now, $$AB^2 = AC^2 + BC^2$$ $$(5x)^2 = (4x)^2 + 15^2$$ $$25x^2 = 16x^2 + 225$$ $$9x^2 = 225$$ $$x = 5$$ Hence, $$AC= 20$$ and $$AB = 25$$ $$\tan \angle ADC = 1$$ $$\dfrac {AC}{CD} = 1$$ $$AC = CD = 20$$ Now, using Pythagoras theorem, $$AD^2 = AC^2 + CD^2$$ $$AD^2 = 20^2 + 20^2$$ $$AD = 20 \sqrt{2}$$
In $$\triangle ABC$$, $$BC = 15$$, $$\sin B = \dfrac {4}{5}$$ Now, $$\sin B = \dfrac {P}{H}$$ $$\dfrac {4}{5} = \dfrac {AC}{AB}$$ Then, let $$AC = 4x$$ and $$AB = 5x$$ Now, $$AB^2 = AC^2 + BC^2$$ $$(5x)^2 = (4x)^2 + 15^2$$ $$25x^2 = 16x^2 + 225$$ $$9x^2 = 225$$ $$x = 5$$ Hence, $$AC= 20$$ and $$AB = 25$$
$$\sin x+{ \sin }^{ 2 }x+{ \sin }^{ 3 }x=1\Rightarrow \sin x+{ \sin }^{ 3 }x=1-{ \sin }^{ 2 }x\\ \Rightarrow \sin x\left( 1+\sin ^{ 2 }x \right) ={ \cos }^{ 2 }x\Rightarrow \sin x\left( 2-{ \cos }^{ 2 }x \right) ={ \cos }^{ 2 }x\\ \Rightarrow { \sin }^{ 2 }x{ \left( 2-{ \cos }^{ 2 }x \right) }^{ 2 }={ \cos }^{ 4 }x\\ \Rightarrow \left( 1-{ \cos }^{ 2 }x \right) \left( 4+{ \cos }^{ 4 }x-4{ \cos }^{ 2 }x \right) ={ \cos }^{ 4 }x\\ \Rightarrow 4+{ \cos }^{ 4 }x-4{ \cos }^{ 2 }x-4{ \cos }^{ 2 }x-{ \cos }^{ 6 }x+4{ \cos }^{ 4 }x={ \cos }^{ 4 }x\\ \Rightarrow { \cos }^{ 6 }x-4{ \cos }^{ 4 }x+8{ \cos }^{ 2 }x=4$$
Please disable the adBlock and continue. Thank you.