Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 5 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 5
In
△
A
B
C
If
sin
B
is
12
m
, then
m
is:
Report Question
0%
13
0%
12
0%
11
0%
10
Explanation
In
△
A
B
C
,
A
D
⊥
B
C
A
B
=
13
,
B
D
=
5
,
D
C
=
16
Now, In
△
A
B
D
,
A
B
2
=
A
D
2
+
B
D
2
13
2
=
A
D
2
+
5
2
A
D
2
=
144
A
D
=
12
Now, in
△
A
D
C
,
A
C
2
=
A
D
2
+
C
D
2
A
C
2
=
12
2
+
16
2
A
C
2
=
144
+
256
A
C
=
20
cm
Now,
sin
B
=
P
H
=
A
D
A
B
=
12
13
Find the value of :
cot
2
C
−
1
sin
2
C
.
Report Question
0%
- 1
0%
2
0%
4
0%
0
Explanation
Given,
△
A
B
C
, A perpendicular from B on AC, let it cut AC at D, such that
∠
B
D
A
=
∠
B
D
C
=
90
∘
A
D
=
3
B
D
=
4
B
C
=
12
In
△
A
B
D
,
A
B
2
=
B
D
2
+
A
D
2
A
B
2
=
3
2
+
4
2
A
B
=
5
In
△
B
C
D
B
C
2
=
C
D
2
+
B
D
2
12
2
=
C
D
2
+
4
2
C
D
2
=
128
C
D
=
8
√
2
Now,
c
o
t
2
C
−
1
sin
2
C
=
c
o
t
2
C
−
c
s
c
2
C
=
(
B
P
)
2
−
(
H
P
)
2
=
(
8
√
2
4
)
2
−
(
12
4
)
2
=
8
−
9
=
−
1
If
sin
C
is
1
m
, then
m
is:
Report Question
0%
1
0%
5
0%
2
0%
3
Explanation
Given,
△
A
B
C
, A perpendicular from B on AC.
Let it cut AC at D, such that
∠
B
D
A
=
∠
B
D
C
=
90
∘
A
D
=
3
B
D
=
4
B
C
=
12
In
△
A
B
D
,
A
B
2
=
B
D
2
+
A
D
2
A
B
2
=
3
2
+
4
2
A
B
=
5
In
△
B
C
D
B
C
2
=
C
D
2
+
B
D
2
12
2
=
C
D
2
+
4
2
C
D
2
=
128
C
D
=
8
√
2
Now,
sin
C
=
P
H
=
B
D
D
C
=
4
12
=
1
3
So, option D is correct.
If
tan
C
is
3
m
, then
m
is:
Report Question
0%
1
0%
4
0%
3
0%
2
Explanation
In
△
A
B
C
,
A
D
⊥
B
C
A
B
=
13
,
B
D
=
5
,
D
C
=
16
Now, In
△
A
B
D
,
A
B
2
=
A
D
2
+
B
D
2
13
2
=
A
D
2
+
5
2
A
D
2
=
144
A
D
=
12
Now, in
△
A
D
C
,
A
C
2
=
A
D
2
+
C
D
2
A
C
2
=
12
2
+
16
2
A
C
2
=
144
+
256
A
C
=
20
cm
Now,
tan
C
=
P
B
=
A
D
C
D
=
12
16
=
3
4
If
cos
A
is
3
m
, then m is:
Report Question
0%
5
0%
1
0%
2
0%
7
Explanation
Given,
△
A
B
C
, A perpendicular from B on AC, let it cut AC at D, such that
∠
B
D
A
=
∠
B
D
C
=
90
∘
A
D
=
3
B
D
=
4
B
C
=
12
In
△
A
B
D
,
A
B
2
=
B
D
2
+
A
D
2
A
B
2
=
3
2
+
4
2
A
B
=
5
In
△
B
C
D
B
C
2
=
C
D
2
+
B
D
2
12
2
=
C
D
2
+
4
2
C
D
2
=
128
C
D
=
8
√
2
Now,
cos
A
=
B
H
=
A
D
A
B
=
3
5
⟹
m
=
5
If
5
cot
θ
=
12
, find the value of :
csc
θ
+
sec
θ
is
3
41
m
, m is
Report Question
0%
40
0%
60
0%
50
0%
13
Explanation
5
cot
θ
=
12
cot
θ
=
12
5
cot
θ
=
B
P
=
12
5
Using Pythagoras Theorem,
H
2
=
P
2
+
B
2
H
2
=
12
2
+
5
2
H
=
13
Now,
csc
θ
+
sec
θ
=
H
P
+
H
B
=
13
12
+
13
5
=
65
+
156
60
=
221
60
=
3
41
60
s
i
n
∠
D
B
A
is
4
m
value of m is
Report Question
0%
0
0%
7
0%
9
0%
5
Explanation
In
△
A
B
C
A
B
2
+
B
C
2
=
A
C
2
(By Pythagoras theorem)
4
2
+
3
2
=
A
C
2
A
C
2
=
25
A
C
=
5
In
△
A
B
C
∠
A
+
∠
B
+
∠
C
=
180
∠
A
+
∠
C
=
90
(As
∠
B
=
90
).....(i)
In
△
A
B
D
,
∠
A
+
∠
B
D
A
+
∠
D
B
A
=
180
∠
A
+
∠
D
B
A
=
90
(As
∠
B
D
A
=
90
).....(i)
From (i) and (ii)
∠
C
=
∠
D
B
A
Similarly,
∠
D
B
C
=
∠
A
Now,
sin
∠
D
B
A
=
sin
∠
C
=
P
H
=
A
B
A
C
=
4
5
t
a
n
∠
D
B
C
is
m
4
value of m is
Report Question
0%
1
0%
3
0%
4
0%
2
Explanation
In
△
A
B
C
A
B
2
+
B
C
2
=
A
C
2
(By Pythagoras theorem)
4
2
+
3
2
=
A
C
2
A
C
2
=
25
A
C
=
5
In
△
A
B
C
∠
A
+
∠
B
+
∠
C
=
180
∠
A
+
∠
C
=
90
(As
∠
B
=
90
).....(i)
In
△
A
B
D
,
∠
A
+
∠
B
D
A
+
∠
D
B
A
=
180
∠
A
+
∠
D
B
A
=
90
(As
∠
B
D
A
=
90
).....(i)
From (i) and (ii)
∠
C
=
∠
D
B
A
Similarly,
∠
D
B
C
=
∠
A
Now,
tan
∠
D
B
C
=
tan
∠
A
=
P
B
=
B
C
A
B
=
3
4
If
tan
A
+
cot
A
=
5
; find the value if
tan
2
A
+
cot
2
A
.
Report Question
0%
14
0%
27
0%
23
0%
335
Explanation
tan
A
+
cot
A
=
5
Squaring both sides,
(
tan
A
+
cot
A
)
2
=
25
tan
2
A
+
cot
2
A
+
2
tan
A
cot
A
=
25
tan
2
A
+
cot
2
A
+
2
=
25
tan
2
A
+
cot
2
A
=
23
If
x
=
a
cos
3
θ
sin
2
θ
,
y
=
a
sin
3
θ
cos
2
θ
and
(
x
2
+
y
2
)
p
(
x
y
)
q
(
p
,
q
ϵ
N
)
is independent of
θ
, then
Report Question
0%
p
=
4
0%
p
=
5
0%
q
=
4
0%
q
=
−
5
Explanation
x
2
+
y
2
=
(
a
cos
3
θ
sin
2
θ
)
2
+
(
a
sin
3
θ
cos
2
θ
)
2
=
a
2
sin
4
θ
cos
4
θ
x
y
=
(
a
cos
3
θ
sin
2
θ
)
(
a
sin
3
θ
cos
2
θ
)
=
a
2
sin
5
θ
cos
5
θ
Therefore,
(
x
2
+
y
2
)
p
(
x
y
)
q
=
a
2
p
(
sin
θ
cos
θ
)
4
p
a
2
q
(
sin
θ
cos
θ
)
5
q
Is Independent of
θ
when
4
p
=
5
q
i.e.
p
=
5
,
q
=
4
Hence, option
′
B
′
and
′
C
′
are correct.
Evaluate :
3
cos
53
∘
cosec
37
∘
(
cos
2
29
∘
+
cos
2
61
∘
)
−
3
tan
2
45
∘
Report Question
0%
1
0%
3
0%
6
0%
0
Explanation
3
cos
53
∘
c
o
s
e
c
37
∘
(
cos
2
29
∘
+
cos
2
61
∘
)
−
3
tan
2
45
∘
=
3
cos
53
∘
cosec
(
90
−
53
)
∘
(
cos
2
29
∘
+
cos
2
(
90
−
29
)
∘
)
−
3
tan
2
45
∘
=
3
cos
53
∘
sec
53
∘
(
cos
2
29
∘
+
sin
2
29
∘
)
−
3
tan
2
45
∘
=
3
1
−
3
(
1
)
2
=
0
If
tan
1
o
tan
2
o
.
.
.
tan
89
o
=
x
2
−
8
, then the value of
x
can be
Report Question
0%
−
1
0%
1
0%
−
3
0%
3
Explanation
Given that,
tan
1
o
tan
2
o
.
.
.
tan
89
o
=
x
2
−
8
To find out,
The value of
x
We can rewrite the given equation as:
x
2
−
8
=
(
tan
1
o
tan
89
o
)
(
tan
2
o
tan
88
o
)
.
.
.
.
(
tan
44
o
tan
46
o
)
tan
45
o
We can write
tan
89
o
as
tan
(
90
o
−
1
o
)
,
tan
88
o
as
tan
(
90
o
−
2
o
)
and so on up to
tan
46
o
as
tan
(
90
o
−
44
o
)
Hence, the equation becomes:
x
2
−
8
=
(
tan
1
o
tan
(
90
o
−
1
o
)
)
(
tan
2
o
tan
(
90
o
−
2
o
)
)
.
.
.
.
(
tan
44
o
tan
(
90
o
−
44
o
)
)
tan
45
o
We know that,
tan
(
90
o
−
θ
)
=
cot
θ
So,
x
2
−
8
=
(
tan
1
o
cot
1
o
)
(
tan
2
o
cot
2
o
)
.
.
.
.
(
tan
44
o
cot
44
o
)
tan
45
o
Also,
cot
θ
=
1
tan
θ
So,
x
2
−
8
=
(
tan
1
o
×
1
tan
1
o
)
(
tan
2
o
×
1
tan
2
o
)
.
.
.
.
(
tan
44
o
×
1
tan
44
o
)
tan
45
o
x
2
−
8
=
(
1
)
(
1
)
.
.
.
.
(
1
)
×
tan
45
o
tan
45
o
=
1
So,
x
2
−
8
=
(
1
)
(
1
)
.
.
.
.
(
1
)
×
1
⇒
x
2
−
8
=
1
⇒
x
2
=
9
⇒
x
=
±
3
Hence, if
tan
1
o
tan
2
o
.
.
.
tan
89
o
=
x
2
−
8
, the value of
x
is
3
or
−
3
.
c
o
t
∠
D
B
A
Report Question
0%
3
11
0%
11
17
0%
7
9
0%
5
12
Explanation
In
△
A
B
C
A
B
2
+
B
C
2
=
A
C
2
(By Pythagoras theorem)
12
2
+
5
2
=
A
C
2
A
C
2
=
169
A
C
=
13
In
△
A
B
C
∠
A
+
∠
B
+
∠
C
=
180
∠
A
+
∠
C
=
90
(As
∠
B
=
90
).....(i)
In
△
A
B
D
,
∠
A
+
∠
B
D
A
+
∠
D
B
A
=
180
∠
A
+
∠
D
B
A
=
90
(As
∠
B
D
A
=
90
).....(i)
From (i) and (ii)
∠
C
=
∠
D
B
A
Similarly,
∠
D
B
C
=
∠
A
Now,
cot
∠
D
B
A
=
cot
∠
C
=
B
P
=
B
C
A
B
=
5
12
Given:
cos
A
=
5
13
.
If
sin
A
−
cot
A
2
tan
A
is
m
3744
,
m
is:
Report Question
0%
695
0%
595
0%
295
0%
395
Explanation
Given,
cos
A
=
5
13
cos
A
=
B
H
=
5
13
Now, using Pythagoras Theorem,
H
2
=
P
2
+
B
2
13
2
=
P
2
+
5
2
P
=
12
Now,
sin
A
−
cot
A
2
tan
A
=
12
13
−
5
12
2
(
12
5
)
=
144
−
65
156
24
5
=
79
156
24
5
=
395
3744
Given :
s
e
c
A
=
29
21
, evaluate :
s
i
n
A
−
1
t
a
n
A
is
−
m
580
, m is
Report Question
0%
130
0%
215
0%
209
0%
524
Explanation
sec
A
=
29
21
sec
A
=
H
B
=
29
21
Using Pythagoras Theorem,
H
2
=
P
2
+
B
2
29
2
=
P
2
+
21
2
841
=
441
+
P
2
P
=
20
N
o
w
,
sin
A
−
1
tan
A
=
sin
A
−
cot
A
=
P
H
−
B
P
=
20
29
−
21
20
=
400
−
609
580
=
−
209
580
$
If
x
=
csc
2
θ
,
y
=
sec
2
θ
,
and
z
=
1
1
−
sin
2
θ
cos
2
θ
,
then
x
y
z
is equal to
Report Question
0%
x
+
y
+
z
0%
x
y
+
z
0%
x
+
y
−
z
0%
x
+
y
z
Explanation
Given:
x
=
csc
2
θ
,
y
=
sec
2
θ
,
and
z
=
1
1
−
sin
2
θ
cos
2
θ
Now,
z
=
1
1
−
sin
2
θ
cos
2
θ
Dividing numerator and denominator with
sin
2
θ
cos
2
θ
=
1
sin
2
θ
cos
2
θ
1
sin
2
θ
cos
2
θ
−
1
=
csc
2
θ
.
sec
2
θ
csc
2
θ
.
sec
2
θ
−
1
=
x
y
x
y
−
1
.
.
.
(
1
)
An
d
x
y
=
csc
2
θ
×
sec
2
θ
=
1
sin
2
θ
cos
2
θ
=
sin
2
θ
+
cos
2
θ
sin
2
θ
cos
2
θ
=
1
sin
2
θ
+
1
cos
2
θ
=
csc
2
θ
+
sec
2
θ
.
.
.
(
2
)
From
(
1
)
and
(
2
)
,
we get
x
y
z
−
z
=
x
y
⇒
x
y
z
=
x
y
+
z
or
x
y
z
=
x
+
y
+
z
If
t
a
n
x
∘
=
5
12
,
t
a
n
y
∘
=
3
4
and
A
B
=
48
m
; find the length of
C
D
.
Report Question
0%
50
m
0%
45
m
0%
40
m
0%
55
m
Explanation
tan
x
o
=
5
12
tan
y
o
=
3
4
A
B
=
48
m
Let
C
D
=
x
m
From
Δ
A
C
D
,
tan
x
o
=
C
D
A
C
⇒
5
12
=
x
A
C
⇒
A
C
=
12
x
5
And from
Δ
B
C
D
,
tan
y
o
=
C
D
B
C
⇒
3
4
=
x
B
C
⇒
B
C
=
4
x
3
From diagram,
A
B
=
A
C
−
B
C
⇒
48
=
12
x
5
−
4
x
3
⇒
48
=
36
x
−
20
x
15
⇒
16
x
=
48
×
15
⇒
x
=
45
Thus,
C
D
=
45
m
If,
tan
9
o
=
x
y
then, value of
sec
2
81
o
1
+
cot
2
81
o
is
Report Question
0%
x
3
y
3
0%
x
4
y
4
0%
x
5
y
5
0%
y
2
x
2
Explanation
Given,
tan
9
o
=
x
y
=
sec
2
81
o
1
+
cot
2
81
o
=
sec
2
81
o
c
o
s
e
c
2
81
o
=
1
cos
2
81
o
1
sin
2
81
o
=
sin
2
81
o
cos
2
81
o
=
tan
2
81
o
=
[
tan
(
90
o
−
9
o
)
]
2
=
(
cot
9
o
)
2
=
cot
2
9
o
=
1
tan
2
9
o
=
y
2
x
2
Hence, option 'D' is correct.
Say yes or no.
tan
48
∘
tan
23
∘
tan
42
∘
tan
67
∘
=
1
Report Question
0%
Yes
0%
No
0%
Ambiguous
0%
Data insufficient
Explanation
L
H
S
=
tan
48
∘
tan
23
∘
tan
42
∘
tan
67
∘
=
tan
48
∘
×
tan
23
∘
×
tan
(
90
∘
−
48
∘
)
×
tan
(
90
∘
−
23
∘
)
=
tan
48
∘
×
tan
23
∘
×
c
o
t
48
∘
×
c
o
t
23
∘
=
tan
48
∘
×
tan
23
∘
×
1
tan
48
∘
×
1
tan
23
∘
=
1
∴
L
H
S
=
R
H
S
(
sin
50
∘
cos
40
∘
)
2
+
(
cos
28
∘
sin
62
∘
)
2
−
2
tan
2
45
∘
Report Question
0%
0
0%
1
2
0%
1
0%
−
2
Explanation
(
sin
50
∘
cos
40
∘
)
2
+
(
cos
28
∘
sin
62
∘
)
2
−
2
tan
2
45
∘
=
(
sin
(
90
−
40
)
∘
cos
40
∘
)
2
+
(
cos
28
∘
sin
(
90
−
28
)
∘
)
2
−
2
tan
2
45
∘
=
(
cos
40
∘
cos
40
∘
)
2
+
(
cos
28
∘
cos
28
∘
)
2
−
2
tan
2
45
∘
=
1
+
1
−
2
(
1
)
2
=
0
If
cos
α
cos
β
=
a
,
sin
α
sin
β
=
b
, then
Report Question
0%
sin
2
β
=
a
2
−
1
a
2
−
b
2
0%
cos
2
β
=
a
2
−
1
a
2
−
b
2
0%
cos
2
α
=
(
b
2
−
1
)
a
2
b
2
−
a
2
0%
sin
2
α
=
(
b
2
−
1
)
a
2
b
2
−
a
2
Explanation
Given,
cos
α
cos
β
=
a
,
sin
α
sin
β
=
b
⇒
cos
2
α
=
a
2
cos
2
β
and
sin
2
α
=
b
2
sin
2
β
Adding both,
a
2
cos
2
β
+
b
2
sin
2
β
=
1
⇒
a
2
(
1
−
sin
2
β
)
+
b
2
sin
2
β
=
1
⇒
sin
2
β
=
a
2
−
1
a
2
−
b
2
⇒
cos
2
β
=
1
−
a
2
−
1
a
2
−
b
2
=
1
−
b
2
a
2
−
b
2
also we have,
cos
2
α
=
a
2
cos
2
β
⇒
cos
2
α
=
a
2
(
1
−
b
2
)
a
2
−
b
2
⇒
sin
2
α
=
1
−
a
2
(
1
−
b
2
)
a
2
−
b
2
=
b
2
(
a
2
−
1
)
a
2
−
b
2
Choose the correct option
2
tan
30
∘
1
+
(
tan
30
0
)
2
Report Question
0%
sin
60
∘
0%
cos
60
∘
0%
tan
60
∘
0%
sin
30
∘
Explanation
2
tan
30
∘
1
+
tan
30
∘
=
2
(
1
√
3
)
1
+
(
1
√
3
)
2
=
2
√
3
1
+
1
3
=
2
√
3
×
3
4
=
√
3
2
=
sin
60
∘
Find the value of
(
3
cos
43
∘
sin
47
∘
)
2
−
cos
37
∘
.
cosec
53
∘
tan
5
∘
.
tan
25
∘
.
tan
45
∘
.
tan
65
∘
tan
85
∘
Report Question
0%
7
0%
0
0%
1
0%
8
Explanation
(
3
cos
43
∘
sin
47
∘
)
2
−
cos
37
∘
.
cosec
53
∘
tan
5
∘
.
tan
25
∘
.
tan
45
∘
.
tan
65
∘
tan
85
∘
=
?
=
(
3
cos
43
∘
sin
47
∘
)
2
−
cos
37
∘
×
cosec
53
∘
tan
5
∘
×
tan
25
∘
×
tan
45
∘
×
tan
65
∘
×
tan
85
∘
=
(
3
sin
47
∘
sin
47
∘
)
2
−
cos
37
∘
sin
53
∘
×
1
tan
5
∘
×
tan
25
∘
×
(
1
)
×
c
o
t
25
∘
×
c
o
t
5
∘
=
3
2
−
sin
53
∘
sin
53
∘
×
1
tan
5
∘
tan
5
∘
×
tan
25
∘
tan
25
∘
=
9
−
1
=
8
Hence, option 'D' is correct.
Let
x
=
(
1
+
sin
A
)
(
1
−
sin
B
)
(
1
+
sin
C
)
,
y
=
(
1
−
sin
A
)
(
1
−
sin
B
)
(
1
−
sin
C
)
and if
x
=
y
, then
Report Question
0%
x
=
cos
A
cos
B
cos
C
0%
y
=
sin
A
sin
B
sin
C
0%
y
=
−
cos
A
cos
B
cos
C
0%
x
=
−
sin
A
sin
B
sin
C
Explanation
P
=
(
1
+
sin
A
)
(
1
+
sin
B
)
(
1
+
sin
C
)
=
(
1
−
sin
A
)
(
1
−
sin
B
)
(
1
−
sin
C
)
......As
x
=
y
(given)
⇒
P
2
=
(
1
+
sin
A
)
(
1
+
sin
B
)
(
1
+
sin
C
)
×
(
1
−
sin
A
)
(
1
−
sin
B
)
(
1
−
sin
C
)
⇒
P
2
=
(
1
−
sin
2
A
)
(
1
−
sin
2
B
)
(
1
−
sin
2
C
)
=
cos
2
A
cos
2
B
cos
2
C
∴
P
=
±
cos
A
cos
B
cos
C
If
cos
A
+
cos
2
A
=
1
then
sin
2
A
+
sin
4
A
=
1
.Is it true or false?
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
c
o
s
A
+
c
o
s
2
A
=
1
c
o
s
A
=
1
−
c
o
s
2
A
c
o
s
A
=
s
i
n
2
A
Hence
s
i
n
4
A
+
s
i
n
2
A
c
o
s
2
A
+
c
o
s
A
=
1
Hence True.
Is LHS=RHS?
c
o
s
e
c
θ
+
cot
θ
c
o
s
e
c
θ
−
cot
θ
=
1
+
2
cot
2
θ
+
2
c
o
s
e
c
θ
cot
θ
Report Question
0%
Yes
0%
No
0%
Can't say
0%
Ambiguous
If
tan
A
=
3
4
and
A
+
B
=
90
∘
, then what is the value of
cot
B
?
Report Question
0%
1
2
0%
−
2
5
0%
3
4
0%
−
7
5
Explanation
Given,
A
+
B
=
90
∘
=>
A
=
90
∘
−
B
Given,
tan
A
=
3
4
=>
cot
B
=
3
4
Is LHS=RHS?
tan
2
θ
1
+
tan
2
θ
+
cot
3
θ
1
+
cot
2
θ
=
sec
θ
s
i
n
θ
−
2
c
o
s
e
c
θ
cos
θ
Say true or false.
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
c
o
t
3
x
1
+
c
o
t
2
x
=
t
a
n
2
(
x
)
.
c
o
t
3
x
1
+
t
a
n
2
(
x
)
=
c
o
t
(
x
)
1
+
t
a
n
2
(
x
)
Hence the above expression becomes,
t
a
n
2
x
+
c
o
t
x
1
+
t
a
n
2
(
x
)
=
t
a
n
3
x
+
1
(
t
a
n
x
)
(
t
a
n
2
x
+
1
)
=
c
o
s
3
(
x
)
(
s
i
n
3
x
+
c
o
s
3
x
)
c
o
s
3
x
.
s
i
n
x
=
c
o
s
3
x
+
s
i
n
3
x
s
i
n
x
RHS
=
1
−
2
s
i
n
2
x
c
o
s
2
x
s
i
n
x
.
c
o
s
x
=
(
s
i
n
2
x
+
c
o
s
2
x
)
2
−
2
s
i
n
2
x
c
o
s
2
x
s
i
n
x
.
c
o
s
x
=
s
i
n
4
x
+
c
o
s
4
x
s
i
n
x
.
c
o
s
x
Hence
L
H
S
≠
R
H
S
Evaluate the following
(
i
)
1
+
tan
2
30
∘
1
−
tan
2
30
∘
+
c
o
s
e
c
2
60
∘
−
cos
2
45
∘
+
sin
2
45
∘
+
1
+
cot
2
60
∘
1
−
cot
2
60
∘
(
i
i
)
4
(
sin
4
30
∘
+
cos
4
60
∘
)
−
3
(
cos
2
45
∘
−
sin
2
90
∘
)
Report Question
0%
(
i
)
16
3
(
i
i
)
4
0%
(
i
)
19
3
(
i
i
)
7
0%
(
i
)
16
7
(
i
i
)
11
0%
(
i
)
17
5
(
i
i
)
5
Explanation
1
+
t
a
n
2
30
0
1
−
t
a
n
2
30
0
+
c
o
s
e
c
2
60
0
−
c
o
s
2
45
0
+
s
i
n
2
45
0
+
1
+
c
o
t
2
60
0
1
−
c
o
t
2
60
0
=
3
+
1
3
−
1
+
4
3
−
1
2
+
1
2
+
3
+
1
3
−
1
=
2
(
2
)
+
4
3
=
16
3
4
(
s
i
n
4
30
0
+
c
o
s
4
30
0
)
−
3
(
c
o
s
2
45
0
−
s
i
n
2
90
0
)
=
4
(
1
+
9
16
)
−
3
(
1
2
−
1
)
=
10
4
+
3
2
=
8
2
=
4
If
sin
θ
−
cos
θ
=
0
, then the value of
(
sin
4
θ
+
cos
4
θ
)
is
Report Question
0%
1
0%
3
4
0%
1
2
0%
1
4
Explanation
From the above equation, we get
cos
θ
=
sin
θ
Hence
θ
=
45
0
Therefore
sin
4
θ
+
cos
4
θ
=
sin
4
45
0
+
cos
4
45
0
=
2
×
(
1
√
2
)
4
=
2
×
1
4
=
1
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page