Processing math: 25%

CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 6 - MCQExams.com

sin30+cos60 equals
  • 1+32
  • 3
  • 1
  • None of these
In ABC, B=90. If AB=14 cm and AC=50 cm then tanA equals:
  • 2425
  • 247
  • 724
  • 2524
The value of the expression [cosec(75+θ)sec(15θ)tan(55+θ)+cot(35θ)] is
  • 1
  • 0
  • 1
  • 32
If secθ=p2+q2q, then the value of psinθqcosθpsinθ+qcosθ
  • pq
  • p2q2
  • p2q2p2+q2
  • p2+q2p2q2
Is LHS=RHS?
{1+cosθ+sinθ1+cosθsinθ}2=1+sinθ1sinθ,1cosθ0
  • Yes
  • No
  • Ambiguos
  • Data insufficient
If secθ+tanθ=P, then the value of sinθ is
  • P2+12P
  • P212P
  • P21P2+1
  • P2+1P21
Is LHS=RHS?
cscθcotθcscθ+cotθ+cscθ+cotθcscθcotθ=2cscθ
Say true or false.
  • True
  • False
  • Ambiguous
  • Data insufficient
If sinθ+cosecθ=2, then the value of sin8θ+cosec8θ is equal to
  • 2
  • 28
  • 24
  • none of these
If cos9α=sinα, and 9α<90, then tan5α=.....
  • 13
  • 3
  • 1
  • 0
If \sin{x}+\sin^{2}{x}=1, then the value of \cos^{2}{ x}+\cos^{4}{x} is 
  • 0
  • 2
  • 1
  • None of these
2(\sin^{6}{\theta}+\cos^{6}{\theta})-3(\sin^{4}{\theta}+\cos^{4}{\theta})+1 is equal to
  • 2
  • 0
  • 4
  • 6
If \sin \theta + \cos \theta = 1, then \sin \theta \cos \theta =.
  • 0
  • 1
  • 2
  • \dfrac {1}{2}
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is incorrect but Reason is correct
  • Both Assertion and Reason are incorrect
Find \theta, if \displaystyle\frac{2\tan\displaystyle\frac{\theta}{2}}{1 + \tan^2\displaystyle\frac{\theta}{2}} = 1,\quad 0^{\small\circ} < \theta \le 90^{\small\circ}
  • \theta = 60^{\small\circ}
  • \theta = 40^{\small\circ}
  • \theta = 90^{\small\circ}
  • \theta = 70^{\small\circ}
If (\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C}) represents each side of a equilateral triangle, then each side is equal to -
  • 0
  • 1
  • -1
  • \pm 1
If \displaystyle \sin \theta +\sin ^{2}\theta = 1, then \displaystyle \cos ^{2}\theta +\cos ^{4}\theta =
  • 1
  • \displaystyle \sqrt{2}
  • 0
  • 2
If \displaystyle 4\sin \theta =3\cos \theta , Then \displaystyle \frac{\sec ^{2}\theta }{4(1-\tan ^{2}\theta )} is 
  • \displaystyle \frac{25}{16}
  • \displaystyle \frac{25}{28}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{16}{25}
If \displaystyle \tan \theta =\frac{x}{y}, then \displaystyle \frac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta } is equal to 
  • \displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}
  • \displaystyle \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
  • \displaystyle \frac{x}{\sqrt{x^{2}+y^{2}}}
  • \displaystyle \frac{y}{\sqrt{x^{2}+y^{2}}}
If x = a \sec \displaystyle \theta + b tan \displaystyle \theta and y = b \sec \displaystyle \theta + a tan \displaystyle \theta , then \displaystyle x^{2}-y^{2} is equal to 
  • \displaystyle 4ab \sec \theta \tan \theta
  • \displaystyle a^{2}-b^{2}
  • \displaystyle b^{2}-a^{2}
  • \displaystyle a^{2}+b^{2}
Consider the following:
1. \displaystyle \tan ^{2}\theta -\sin ^{2}\theta =\tan ^{2}\theta \sin ^{2}\theta
2.\displaystyle (1+\cot ^{2}\theta )(1-\cos \theta )(1+\cos \theta )=1
Which of the statements given below is correct ?
  • 1 only is the identity
  • 2 only is the identity
  • Both 1 and 2 are identities
  • Neither 1 nor 2 is the identity
If \sin{x}+\sin^{2}{x}=1, then \cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2 is equals to
  • 0
  • 1
  • -1
  • 2
If \displaystyle \tan 2A= \cot (A-60^{\circ}), where 2A is an acute angle, then the value of A is 
  • \displaystyle 30^{\circ}
  • \displaystyle 60^{\circ}
  • \displaystyle 50^{\circ}
  • \displaystyle 24^{\circ}
If \displaystyle x = a\cos ^{3}\theta and y = b \displaystyle \sin ^{3}\theta , then the value of \displaystyle \left ( \frac{x}{a} \right )^{2/3}+\left ( \frac{y}{b} \right )^{2/3} is 
  • 1
  • -2
  • 2
  • -1
The value of \displaystyle \cot 15^{\circ}\cot 16^{\circ}\cot 17^{\circ}.....\cot 73^{\circ}\cot 74^{\circ}\cot 75^{\circ} is
  • \displaystyle \frac{1}{2}
  • 0
  • 1
  • -1
\displaystyle \dfrac{1+\tan ^{2}A}{1+\cot ^{2}A} equals 
  • \displaystyle \sec ^{2}A
  • -1
  • \displaystyle \cot ^{2}A
  • \displaystyle \tan ^{2}A
Using trigonometric identities \displaystyle 5 \text{ cosec} ^{2}\theta -5\text{ cot} ^{2}\theta -3 expressed as an integer is 
  • 5
  • 3
  • 2
  • 0
\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec} ^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ} is 
  • 1
  • \displaystyle -\frac{20}{3}
  • \displaystyle \frac{10}{3}
  • 5
In the given figure, tan x^o = \dfrac{4}{3} and "T" is the mid-point of PR, calculate the length of PQ.
509006.jpg
  • \sqrt 8 m
  • 9 m
  • \sqrt{59} m
  • 10 m
Evaluate: \displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
  • \displaystyle \sqrt{3}
  • 2
  • 1
  • \displaystyle \sqrt{2}
Evaluate: \sin { \left( { 50 }^{ o }+\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
  • 0
  • 1
  • 2
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers