Processing math: 25%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 6 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 6
sin
30
∘
+
cos
60
∘
equals
Report Question
0%
1
+
√
3
2
0%
√
3
0%
1
0%
None of these
Explanation
sin
30
0
+
cos
60
0
=
sin
30
0
+
sin
(
90
0
−
60
0
)
=
2
sin
30
0
=
2
×
1
2
=
1
In
△
A
B
C
,
∠
B
=
90
∘
. If
A
B
=
14
c
m
and
A
C
=
50
c
m
then
tan
A
equals:
Report Question
0%
24
25
0%
24
7
0%
7
24
0%
25
24
Explanation
In triangle ABC
B
=
90
0
Hence
A
C
=
50
c
m
will be the hypotenuse.
And
A
B
=
14
c
m
Therefore
B
C
=
√
A
C
2
−
A
B
2
c
m
=
48
c
m
Hence
t
a
n
A
=
p
e
r
p
e
n
d
i
c
u
l
a
r
b
a
s
e
=
B
C
A
B
=
48
14
=
24
7
The value of the expression
[
cosec(
75
∘
+
θ
)
−
sec
(
15
∘
−
θ
)
−
tan
(
55
∘
+
θ
)
+
cot
(
35
∘
−
θ
)
]
is
Report Question
0%
−
1
0%
0
0%
1
0%
3
2
Explanation
c
o
s
e
c
(
75
0
+
θ
)
−
sec
(
15
0
−
θ
)
−
tan
(
55
0
+
θ
)
+
cot
(
35
0
−
θ
)
=
sec
(
90
0
−
75
0
−
θ
)
−
sec
(
15
0
−
θ
)
−
cot
(
90
0
−
55
0
−
θ
)
+
cot
(
35
0
−
θ
)
=
sec
(
15
0
−
θ
)
−
sec
(
15
0
−
θ
)
−
cot
(
35
0
+
θ
)
+
cot
(
35
0
+
θ
)
=
0
If
sec
θ
=
√
p
2
+
q
2
q
, then the value of
p
sin
θ
−
q
cos
θ
p
sin
θ
+
q
cos
θ
Report Question
0%
p
q
0%
p
2
q
2
0%
p
2
−
q
2
p
2
+
q
2
0%
p
2
+
q
2
p
2
−
q
2
Explanation
sec
θ
=
h
y
p
o
t
e
n
u
s
e
b
a
s
e
=
√
p
2
+
q
2
q
Hence,
h
y
p
o
t
e
n
u
s
e
=
√
p
2
+
q
2
b
a
s
e
=
q
Therefore by applying, Pythagoras theorem, we get the altitude as
p
.
Hence
sin
θ
=
p
√
p
2
+
q
2
cos
θ
=
q
√
p
2
+
q
2
Hence substituting, the values in the above question we get
p
sin
θ
−
q
cos
θ
p
sin
θ
+
q
cos
θ
=
p
2
−
q
2
p
2
+
q
2
Is LHS=RHS?
{
1
+
cos
θ
+
sin
θ
1
+
cos
θ
−
sin
θ
}
2
=
1
+
sin
θ
1
−
sin
θ
,
1
−
cos
θ
≠
0
Report Question
0%
Yes
0%
No
0%
Ambiguos
0%
Data insufficient
Explanation
Given
LHS
{
1
+
cos
θ
+
sin
θ
1
+
cos
θ
−
sin
θ
}
2
1
+
cos
2
θ
+
sin
2
θ
+
2
cos
θ
+
2
sin
θ
+
2
cos
θ
sin
θ
1
+
cos
2
θ
+
sin
2
θ
+
2
cos
θ
−
2
sin
θ
−
2
cos
θ
sin
θ
2
+
2
cos
θ
+
2
sin
θ
+
2
cos
θ
sin
θ
2
+
2
cos
θ
−
2
sin
θ
−
2
cos
θ
sin
θ
(
1
+
cos
θ
)
+
sin
θ
(
1
+
cos
θ
)
(
1
+
cos
θ
)
−
sin
θ
(
1
+
cos
θ
)
(
1
+
cos
θ
)
(
1
+
sin
θ
)
(
1
+
cos
θ
)
(
1
−
sin
θ
)
⟹
1
+
sin
θ
1
−
sin
θ
If
sec
θ
+
tan
θ
=
P
, then the value of
sin
θ
is
Report Question
0%
P
2
+
1
2
P
0%
P
2
−
1
2
P
0%
P
2
−
1
P
2
+
1
0%
P
2
+
1
P
2
−
1
Explanation
sec
θ
+
tan
θ
=
P
⇒
(
sec
θ
+
tan
θ
)
2
=
P
2
⇒
sec
2
θ
+
tan
2
θ
+
2
tan
θ
sec
θ
=
P
2
⇒
2
tan
2
θ
+
1
+
2
sin
θ
cos
θ
=
P
2
⇒
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
cos
2
θ
=
P
2
Applying componendo and dividendo
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
−
cos
2
θ
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
−
cos
2
θ
=
P
2
−
1
P
2
+
1
⇒
2
sin
θ
(
sin
θ
+
1
)
2
(
sin
θ
+
1
)
=
P
2
−
1
P
2
+
1
⇒
sin
θ
=
P
2
−
1
P
2
+
1
Is LHS=RHS?
√
csc
θ
−
cot
θ
csc
θ
+
cot
θ
+
√
csc
θ
+
cot
θ
csc
θ
−
cot
θ
=
2
csc
θ
Say true or false.
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
L
H
S
=
√
csc
θ
−
cot
θ
csc
θ
+
cot
θ
+
√
csc
θ
+
cot
θ
csc
θ
−
cot
θ
=
csc
θ
−
cot
θ
+
csc
θ
+
cot
θ
√
csc
2
θ
−
cot
2
θ
=
2
csc
θ
1
=
2
csc
θ
=
R
H
S
If
sin
θ
+
c
o
sec
θ
=
2
, then the value of
sin
8
θ
+
c
o
sec
8
θ
is equal to
Report Question
0%
2
0%
2
8
0%
2
4
0%
none of these
Explanation
sin
θ
+
c
o
s
e
c
θ
=
2
⇒
sin
θ
+
1
sin
θ
=
2
Squaring both sides
(
sin
θ
+
1
sin
θ
)
2
=
2
2
⇒
sin
2
θ
+
1
sin
2
θ
+
2
sin
θ
1
sin
θ
=
4
⇒
sin
2
θ
+
1
sin
2
θ
=
2
Again squaring bot sides
(
sin
2
θ
+
1
sin
2
θ
)
2
=
2
2
⇒
sin
4
θ
+
1
sin
4
θ
=
2
Similarly
sin
8
θ
+
1
sin
8
θ
=
2
⇒
sin
8
θ
+
c
o
s
e
c
8
θ
=
2
If
cos
9
α
=
sin
α
, and
9
α
<
90
∘
, then
tan
5
α
=
.
.
.
.
.
Report Question
0%
1
√
3
0%
√
3
0%
1
0%
0
Explanation
cos
9
α
=
sin
α
,
So,
cos
9
α
=
cos
(
90
−
α
)
∴
Now,
\tan5\alpha=\tan(5*9^o)=\tan45^o=1
Therefore, Answer is
1
If
\sin{x}+\sin^{2}{x}=1
, then the value of
\cos^{2}{ x}+\cos^{4}{x}
is
Report Question
0%
0
0%
2
0%
1
0%
None of these
Explanation
\textbf{Find the value of the given expression}
\text{We have given,}
\sin{x}+\sin^{2}{x}=1
\Rightarrow\sin{x}=1-\sin^{2}{x}
\Rightarrow \sin x=\cos^{2}{x}
\boldsymbol{[\because\sin^2 x+ \cos^2 x=1]}
\text{Now value of required eq. is obtained by}
\text{Substituting the value of}\cos^2 x
\text{in given equation}
\cos^{2}{x}+\cos^{4}{x}
=\sin{x}+\sin^{2}{x}
=1
\Rightarrow \cos^{2}{x}+\cos^{4}{x}=1
\textbf{Hence value of the given expression is 1}
2(\sin^{6}{\theta}+\cos^{6}{\theta})-3(\sin^{4}{\theta}+\cos^{4}{\theta})+1
is equal to
Report Question
0%
2
0%
0
0%
4
0%
6
Explanation
2\left( \sin ^{ 6 }{ \theta } +\cos ^{ 6 }{ \theta } \right) -3\left( \sin ^{ 4 }{ \theta } +\cos ^{ 4 }{ \theta } \right) +1
Using
(a^3+b^3=(a+b)^3-3\cdot a\cdot b(a+b)) \ and \ (a^2+b^2=(a+b)^2-2ab)
, we get
=2\left( { \left( \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } \right) }^{ 3 }-3\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } \left( \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } \right) \right) -3\left( { \left( \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } \right) }^{ 2 }-2\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } \right) +1
=2-6\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } -3+6\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } +1=0
If
\sin \theta + \cos \theta = 1
, then
\sin \theta \cos \theta =
.
Report Question
0%
0
0%
1
0%
2
0%
\dfrac {1}{2}
Explanation
\textbf{Step 1: Apply relevant identity of a trigonometric function and simplify}
\text{We have,}
\sin\theta + \cos\theta = 1
\text{Squaring both sides, we get,}
\left(\sin\theta + \cos\theta\right)^2 = \left(1\right)^2
\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta.\cos\theta = 1
\boldsymbol{\left[\because\left(a + b\right)^2 = a^2 + b^2 + 2ab\right]}
\Rightarrow 1 + 2\sin\theta\cos\theta = 1
\Rightarrow \sin\theta\cos\theta = 0
\textbf{Hence, the answer is 0}
Report Question
0%
Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
0%
Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
0%
Assertion is incorrect but Reason is correct
0%
Both Assertion and Reason are incorrect
Explanation
Given,
\sin\theta+\dfrac{1}{\sin\theta}=2
(\sin\theta+\dfrac{1}{\sin\theta})^{2}=4
\sin^{2}\theta+\dfrac{1}{\sin^{2}\theta}=2
(\sin^{2}\theta+\dfrac{1}{\sin^{2}\theta})^{2}=4
\sin^{4}\theta+\dfrac{1}{\sin^{4}\theta}=2
Therefore
\sin^{2k}\theta+\dfrac{1}{\sin^{2k}\theta}=2
where
k=1,2,..N
Hence assertion is incorrect.
a+b=2
and
ab=1
Then
a=b=1
satisfies the above equation.
Hence reason is correct.
Find
\theta
, if
\displaystyle\frac{2\tan\displaystyle\frac{\theta}{2}}{1 + \tan^2\displaystyle\frac{\theta}{2}} = 1,\quad 0^{\small\circ} < \theta \le 90^{\small\circ}
Report Question
0%
\theta = 60^{\small\circ}
0%
\theta = 40^{\small\circ}
0%
\theta = 90^{\small\circ}
0%
\theta = 70^{\small\circ}
Explanation
Put
\displaystyle\frac{\theta}{2} = A
, then we must have
\displaystyle\frac{2\tan A}{1+\tan^2A} = 1
\Rightarrow 1+\tan^2A - 2\tan A = 0
\Rightarrow(1-\tan A)^2 = 0
\Rightarrow\tan A = 1 = \tan45^{\small\circ}
A = 45^{\small\circ}
We know
\displaystyle\frac{\theta}{2} = A = 45^{\small\circ}
\Rightarrow \displaystyle\frac{\theta}{2} = 45^{\small\circ}
\Rightarrow \theta = 90^{\small\circ}
If
(\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C})
represents each side of a equilateral triangle, then each side is equal to -
Report Question
0%
0
0%
1
0%
-1
0%
\pm 1
Explanation
Let
\left ( \sec A+\tan A \right )\left ( \sec B+\tan B \right )\left ( \sec C+\tan C \right )=x
............(i)
\therefore \left ( \sec A-\tan A \right )\left ( \sec B-\tan B \right )\left ( \sec C-\tan C \right )=x
.............(ii)
Multiplying Eqs. (i) and (ii), we get
\left ( \sec ^{2}A-\tan ^{2}A \right )\left ( \sec ^{2}B-\tan ^{2}B \right )\left ( \sec ^{2}C-\tan ^{2}C \right )=x^{2}
...........
\left ( \sec ^{2}A-\tan ^{2}A \right )=1
or
x^{2}=1
\therefore
x=\pm 1
Hence, each side is equal to
\pm 1
.
If
\displaystyle \sin \theta +\sin ^{2}\theta = 1,
then
\displaystyle \cos ^{2}\theta +\cos ^{4}\theta =
Report Question
0%
1
0%
\displaystyle \sqrt{2}
0%
0
0%
2
Explanation
Given:
\displaystyle \sin\theta + \sin^{2}\theta=1
\therefore \displaystyle \sin\theta=1-\sin^{2}\theta
\therefore \sin \theta = \cos^{2}\theta
Now,
\cos^{2}\theta+\cos^{4}\theta
=\sin\theta+\sin^{2}\theta=1
If
\displaystyle 4\sin \theta =3\cos \theta ,
Then
\displaystyle \frac{\sec ^{2}\theta }{4(1-\tan ^{2}\theta )}
is
Report Question
0%
\displaystyle \frac{25}{16}
0%
\displaystyle \frac{25}{28}
0%
\displaystyle \frac{1}{4}
0%
\displaystyle \frac{16}{25}
Explanation
Given:
4 \sin \theta = 3 \cos \theta
\implies \tan \theta = \dfrac{3}{4}
Now,
\displaystyle \dfrac{\sec ^{2}\theta }{4(1-\tan ^{2}\theta )}
=\displaystyle \dfrac{1 + \tan ^{2}\theta }{4(1-\tan ^{2}\theta )}
=\displaystyle \dfrac{1 + \left(\dfrac{3}{4}\right)^{2} }{4\left[1 - \left(\dfrac{3}{4}\right)^{2}\right]}
=\displaystyle \dfrac{16+ 9}{4(16 - 9)}
=\displaystyle \dfrac{25}{28}
If
\displaystyle \tan \theta =\frac{x}{y},
then
\displaystyle \frac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }
is equal to
Report Question
0%
\displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}
0%
\displaystyle \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
0%
\displaystyle \frac{x}{\sqrt{x^{2}+y^{2}}}
0%
\displaystyle \frac{y}{\sqrt{x^{2}+y^{2}}}
Explanation
\displaystyle \cfrac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }
Multiply and divide by
\cos \theta
=\cfrac{x\cfrac{\sin \theta }{\cos \theta }+y\cfrac{\cos \theta }{\cos \theta }}{x\cfrac{\sin \theta }{\cos \theta }-y\cfrac{\cos \theta}{\cos \theta }}
=\cfrac{x\times\cfrac{x}{y}+y}{x\times\cfrac{x}{y}-y}
=\cfrac{\cfrac{x^{2}+y^{2}}{y}}{\cfrac{x^{2}-y^{2}}{y}}
=\cfrac{x^{2}+y^{2}}{x^{2}-y^{2}}
If
x = a \sec
\displaystyle \theta
+ b tan
\displaystyle \theta
and
y = b \sec
\displaystyle \theta
+ a tan
\displaystyle \theta
, then
\displaystyle x^{2}-y^{2}
is equal to
Report Question
0%
\displaystyle 4ab \sec \theta \tan \theta
0%
\displaystyle a^{2}-b^{2}
0%
\displaystyle b^{2}-a^{2}
0%
\displaystyle a^{2}+b^{2}
Explanation
Given,
x=a\sec \theta+b\tan \theta, y=b\sec \theta +a \tan \theta
\displaystyle x^{2}-y^{2}
=\left ( a\sec\theta+b\tan\theta \right )^{2}-\left ( b\sec\theta+a\tan\theta \right )^{2}
=a^{2}\sec^{2}\theta+2ab\sec\theta\tan\theta+b^{2}tan^2 \theta-\left ( b^{2}\sec^{2}\theta+2ab\sec\theta\tan\theta+a^{2}\tan^{2}\theta \right )
=\left ( a^{2}-b^{2} \right )\sec^{2}\theta+\left ( b^{2}-a^{2} \right )\tan^{2}\theta
=\left ( a^{2} - b^{2} \right )\left ( \sec^{2}\theta-\tan^{2}\theta \right )\left ......[ \because a^{2}-b^{2} =-\left ( b^{2}-a^{2} \right ) \right ]
=a^{2}-b^{2}
......\left ( \because\sec^{2}\theta-\tan^{2}\theta=1 \right )
Hence option
'B'
is the answer.
Consider the following:
1.
\displaystyle \tan ^{2}\theta -\sin ^{2}\theta =\tan ^{2}\theta \sin ^{2}\theta
2.
\displaystyle (1+\cot ^{2}\theta )(1-\cos \theta )(1+\cos \theta )=1
Which of the statements given below is correct ?
Report Question
0%
1 only is the identity
0%
2 only is the identity
0%
Both 1 and 2 are identities
0%
Neither 1 nor 2 is the identity
Explanation
\displaystyle 1.\tan^{2}\theta-\sin^{2}\theta=\frac{\sin^{2}\theta}{\cos^{2}\theta}-\sin^{2}\theta
=\dfrac{\sin^{2}\theta-\sin^{2}\theta\cos^{2}\theta}{\cos^{2}\theta}
=\dfrac{\sin^{2}\theta\left ( 1-\cos^{2}\theta \right )}{\cos^{2}\theta}
=\dfrac{\sin^{2}\theta}{\cos^{2}\theta}\times\sin^{2}\theta=\tan^{2}\theta\sin^{2}\theta\:
2.\left ( 1+\cot^{2}\theta \right )\left ( 1-\cos\theta \right )\left ( 1+cos\theta \right )
=\left ( 1+\cot^{2}\theta \right )\left ( 1-\cos^{2}\theta \right )
=\left ( 1+\frac{\cos^{2}\theta}{\sin^{2}\theta} \right )\left ( 1-\cos^{2}\theta \right )
= \left ( \dfrac{\sin^{2}\theta+\cos^{2}\theta}{\sin^{2}\theta} \right )\times\sin^{2}\theta
.......[Since,
(1-\cos^{2}\theta=\sin^{2}\theta )
]
=1
.......[Since,
\left ( \cos^{2}\theta+\sin^{2}\theta=1 \right )
]
Therefore, both are Identities.
If
\sin{x}+\sin^{2}{x}=1
, then
\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2
is equals to
Report Question
0%
0
0%
1
0%
-1
0%
2
Explanation
Given
\sin{x}+\sin^{2}{x}=1
\Rightarrow \sin x=\cos^2 x
Now,
\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2
= \sin^{6}{x}+3\sin^{5}{x}+3\sin^{4}{x}+\sin^{3}{x}-2
={ (\sin ^{ 2 }{ x } ) }^{ 3 }+3{ (\sin ^{ 2 }{ x } ) }^{ 2 }\sin { x } +3{ (\sin ^{ 2 }{ x } ) }^{ 2 }+\sin ^{ 2 }{ x } \sin { x } -2
={ (\sin ^{ 2 }{ x } ) }^{ 3 }+3{ (\sin ^{ 2 }{ x } ) }^{ 2 }\sin { x } +3\sin ^{ 2 }{ x } { (\sin { x } ) }^{ 2 }+\sin ^{ 3 }{ x } -2
={(\sin^{2}{x}+\sin{x})}^{3}-2
=1-2=-1
If
\displaystyle \tan 2A= \cot (A-60^{\circ}),
where 2A is an acute angle, then the value of A is
Report Question
0%
\displaystyle 30^{\circ}
0%
\displaystyle 60^{\circ}
0%
\displaystyle 50^{\circ}
0%
\displaystyle 24^{\circ}
Explanation
\displaystyle \tan 2A= \cot (A-60^{\circ})
\cot (90 - 2A) = \cot (A - 60)
90 - 2 A = A - 60
3A = 150
A = 50^{\circ}
If
\displaystyle x = a\cos ^{3}\theta
and y = b
\displaystyle \sin ^{3}\theta ,
then the value of
\displaystyle \left ( \frac{x}{a} \right )^{2/3}+\left ( \frac{y}{b} \right )^{2/3}
is
Report Question
0%
1
0%
-2
0%
2
0%
-1
Explanation
Given:
x = a \cos^3 \theta
and
y = b \sin^3 \theta
\therefore \ \dfrac xa = \cos^3 \theta
and
\dfrac yb = \sin^3 \theta
Hence
\displaystyle \left ( \dfrac{x}{a} \right )^{\dfrac{2}{3}}+\left ( \dfrac{y}{b} \right )^{\dfrac{2}{3}}
=\left ( {{\cos^{3}\theta}} \right )^{\dfrac{2}{3}}+\left ( {{\sin^{3}\theta}} \right )^{\dfrac{2}{3}}
=\left ( \cos\theta \right )^{2}+\left ( \sin\theta \right )^{2}
=\sin^{2}\theta+\cos^{2}\theta
=1
The value of
\displaystyle \cot 15^{\circ}\cot 16^{\circ}\cot 17^{\circ}.....\cot 73^{\circ}\cot 74^{\circ}\cot 75^{\circ}
is
Report Question
0%
\displaystyle \frac{1}{2}
0%
0
0%
1
0%
-1
Explanation
\cot { 15° } \cot { 16° } \cot { 17° } .........\cot { 73° } \cot { 74° } \cot { 75° }
=\cot { \left( 90°-75° \right) } \cot { \left( 90°-74° \right) } \cot { \left( 90°-73° \right) } ......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
=\tan { 75° } \tan { 74° } \tan { 73° } .......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
=(\tan { 75° }.\cot75^o) (\tan { 74° }.\cot74^o)( \tan { 73° }.\cot73^o) .......\cot45^o
=1\times1\times1\times.........\times1
=1
Hence, the answer is
1.
\displaystyle \dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}
equals
Report Question
0%
\displaystyle \sec ^{2}A
0%
-1
0%
\displaystyle \cot ^{2}A
0%
\displaystyle \tan ^{2}A
Explanation
\displaystyle \frac{1+\tan ^{2}A}{1+\cot ^{2}A}
=
\displaystyle \dfrac{1+\dfrac{sin ^{2}A}{cos ^{2}A}}{1+\dfrac{cos ^{2}A}{sin ^{2}A}}
=
\displaystyle \dfrac{\dfrac{cos^2 A + sin ^{2}A}{cos ^{2}A}}{\dfrac{ sin^2 A + cos ^{2}A}{sin ^{2}A}}
=
\displaystyle \dfrac{\sin^2 A}{\cos^2 A}
=
\displaystyle \tan^2 A
Using trigonometric identities
\displaystyle 5 \text{ cosec} ^{2}\theta -5\text{ cot} ^{2}\theta -3
expressed as an integer is
Report Question
0%
5
0%
3
0%
2
0%
0
Explanation
The given equation is
\displaystyle 5 \text{ cosec} ^{2}\theta -5\cot ^{2}\theta -3
=
5 ( \text{cosec} ^{2}\theta - \cot ^{2}\theta) -3
=
5 - 3
(since,
\text{cosec}^2 \theta - \text{cot}^2 \theta = 1
)
=
2
\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec} ^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}
is
Report Question
0%
1
0%
\displaystyle -\frac{20}{3}
0%
\displaystyle \frac{10}{3}
0%
5
Explanation
\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec}^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}
= \displaystyle \frac{4}{3}(\sqrt 3)^2+3(\frac {\sqrt 3}{2})^2-2(\frac {2}{\sqrt 3})^2-\frac{3}{4}(\frac {1}{\sqrt 3})^2
=\displaystyle \frac{4}{3}\times 3+3\times \frac {3}{4}-2\times \frac {4}{3}-\frac{3}{4}\times \frac {1}{3}
=\displaystyle 4+ \frac {9}{4}- \frac {8}{3}-\frac{1}{4}
=\displaystyle \frac {10}{3}
Option C is correct.
In the given figure,
tan x^o = \dfrac{4}{3}
and "T" is the mid-point of PR, calculate the length of PQ.
Report Question
0%
\sqrt 8
m
0%
9
m
0%
\sqrt{59}
m
0%
10
m
Explanation
In
\triangle RST
\Rightarrow \tan { x=\dfrac { RT }{ SR } }
\Rightarrow \dfrac { 4 }{ 3 } =\dfrac { RT }{ 3 }
\Rightarrow RT=4m
\therefore PR=2RT=8m
Now,
\triangle PSQ
is a right angled triangle, such that
\Rightarrow PQ{ PR }^{ 2 }+{ PQ }^{ 2 }={ PQ }^{ 2 }
{ \Rightarrow PQ }^{ 2 }+{ PR }^{ 2 }={ RQ }^{ 2 }={ \left( 8 \right) }^{ 2 }+{ \left( 6 \right) }^{ 2 }=64+364
\Rightarrow PQ=\sqrt { 100 } =10m
Hence, the answer is
10m.
Evaluate:
\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
Report Question
0%
\displaystyle \sqrt{3}
0%
2
0%
1
0%
\displaystyle \sqrt{2}
Explanation
\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\tan (90^{\circ}-23^{\circ}).\tan (90^{\circ}-7^{\circ})
\displaystyle \left [ \because \tan (90^{\circ}-\theta )=\cot \theta \right ]
=
\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\cot 23^{\circ}.\cot 7^{\circ}
\displaystyle \tan 7^{\circ}.\cot 7^{\circ}\tan 23^{\circ}.\cot 23^{\circ}.\sqrt{3}
\displaystyle (\because \tan \theta .\cot \theta =1)
\displaystyle =1\times 1\times \sqrt{3}=\sqrt{3}
Evaluate:
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
=\sin { \left[ { 90 }^{ o }-{ 40 }^{ o }+\theta \right] } -\cos { \left( { 40 }^{ o }-\theta \right) } +(\tan { { 1 }^{ o } } \tan {{89}^{o}})(\tan{{10}^{o}}\tan{{80}^{o}})(\tan {{20}^{o}}\tan {{70}^{o}})
=\sin {\left[{90}^{o}-({40}^{o}-\theta) \right]} -\cos {\left({40}^{o}-\theta \right)} +\tan {({90}^{o}} -{ 89 }^{ o })\tan { { 89 }^{ o } } \tan { { (90 }^{ o } } -{ 80 }^{ o })\tan { { 80}^{ o } } \tan { { (90 }^{ o } } -{ 70 }^{ o })\tan { { 70 }^{ o } }
=\cos { \left( { 40 }^{ o }-\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\cot { { 89 }^{ o } } \tan { { 89 }^{ o } } \cot { { 80 }^{ o } } \tan { { 80 }^{ o } } \cot { { 70 }^{ o } } \tan { { 70 }^{ o } }
=0+1
\because \cot {\theta} \tan {\theta}=1
]
=1
Hence,
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}=1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page