CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 6 - MCQExams.com

$$\sin30^{\small\circ} + \cos60^{\small\circ}$$ equals
  • $$\displaystyle\frac{1+\sqrt3}{2}$$
  • $$\sqrt3$$
  • $$1$$
  • None of these
In $$\triangle ABC$$, $$\angle B = 90^{\small\circ}$$. If $$AB = 14\space cm$$ and $$AC = 50\space cm$$ then $$\tan A$$ equals:
  • $$\displaystyle\frac{24}{25}$$
  • $$\displaystyle\frac{24}{7}$$
  • $$\displaystyle\frac{7}{24}$$
  • $$\displaystyle\frac{25}{24}$$
The value of the expression $$[\text{cosec(}75^{\small\circ}+\theta) - \sec(15^{\small\circ}- \theta) - \tan(55^{\small\circ} + \theta) + \cot(35^{\small\circ} - \theta)]$$ is
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$\displaystyle\frac{3}{2}$$
If $$\sec\theta = \displaystyle\frac{\sqrt{p^2 + q^2}}{q}$$, then the value of $$\displaystyle\frac{p\sin\theta - q\cos\theta}{p\sin\theta + q\cos\theta}$$
  • $$\displaystyle\frac{p}{q}$$
  • $$\displaystyle\frac{p^2}{q^2}$$
  • $$\displaystyle\frac{p^2 - q^2}{p^2+q^2}$$
  • $$\displaystyle\frac{p^2 + q^2}{p^2-q^2}$$
Is LHS=RHS?
$$\left\{\displaystyle\frac{1+\cos\theta+\sin\theta}{1+\cos\theta-\sin\theta}\right\}^2 = \displaystyle\frac{1+\sin\theta}{1-\sin\theta},\quad 1-\cos\theta \ne 0$$
  • Yes
  • No
  • Ambiguos
  • Data insufficient
If $$\sec{\theta}+\tan{\theta}=P$$, then the value of $$\sin{\theta}$$ is
  • $$\displaystyle\frac{{P}^{2}+1}{2P}$$
  • $$\displaystyle\frac{{P}^{2}-1}{2P}$$
  • $$\displaystyle\frac{{P}^{2}-1}{{P}^{2}+1}$$
  • $$\displaystyle\frac{{P}^{2}+1}{{P}^{2}-1}$$
Is LHS=RHS?
$$\sqrt{\displaystyle\frac{\csc\theta - \cot\theta}{\csc\theta + \cot\theta}} + \sqrt{\displaystyle\frac{\csc\theta + \cot\theta}{\csc\theta - \cot\theta}} = 2\csc\theta$$
Say true or false.
  • True
  • False
  • Ambiguous
  • Data insufficient
If $$\sin\theta+co\sec\theta=2$$, then the value of $$\sin^8\theta+co\sec^8\theta$$ is equal to
  • $$2$$
  • $$2^8$$
  • $$2^4$$
  • none of these
If $$\cos 9\alpha = \sin \alpha$$, and $$9\alpha < 90^{\circ}$$, then $$\tan 5\alpha = .....$$
  • $$\dfrac {1}{\sqrt {3}}$$
  • $$\sqrt {3}$$
  • $$1$$
  • $$0$$
If $$ \sin{x}+\sin^{2}{x}=1$$, then the value of $$\cos^{2}{ x}+\cos^{4}{x}$$ is 
  • $$0$$
  • $$2$$
  • $$1$$
  • None of these
$$2(\sin^{6}{\theta}+\cos^{6}{\theta})-3(\sin^{4}{\theta}+\cos^{4}{\theta})+1$$ is equal to
  • $$2$$
  • $$0$$
  • $$4$$
  • $$6$$
If $$\sin \theta + \cos \theta = 1$$, then $$\sin \theta \cos \theta =$$.
  • $$0$$
  • $$1$$
  • $$2$$
  • $$\dfrac {1}{2}$$
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is incorrect but Reason is correct
  • Both Assertion and Reason are incorrect
Find $$\theta$$, if $$\displaystyle\frac{2\tan\displaystyle\frac{\theta}{2}}{1 + \tan^2\displaystyle\frac{\theta}{2}} = 1,\quad 0^{\small\circ} < \theta \le 90^{\small\circ}$$
  • $$\theta = 60^{\small\circ}$$
  • $$\theta = 40^{\small\circ}$$
  • $$\theta = 90^{\small\circ}$$
  • $$\theta = 70^{\small\circ}$$
If $$(\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C})$$ represents each side of a equilateral triangle, then each side is equal to -
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\pm 1$$
If $$\displaystyle \sin \theta +\sin ^{2}\theta = 1,$$ then $$\displaystyle \cos ^{2}\theta +\cos ^{4}\theta =$$
  • $$1$$
  • $$\displaystyle \sqrt{2}$$
  • $$0$$
  • $$2$$
If $$\displaystyle 4\sin \theta =3\cos \theta ,$$ Then $$\displaystyle \frac{\sec ^{2}\theta }{4(1-\tan ^{2}\theta )}$$ is 
  • $$\displaystyle \frac{25}{16}$$
  • $$\displaystyle \frac{25}{28}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{16}{25}$$
If $$\displaystyle \tan \theta =\frac{x}{y},$$ then $$\displaystyle \frac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }$$ is equal to 
  • $$\displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}$$
  • $$\displaystyle \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$$
  • $$\displaystyle \frac{x}{\sqrt{x^{2}+y^{2}}}$$
  • $$\displaystyle \frac{y}{\sqrt{x^{2}+y^{2}}}$$
If $$x = a \sec$$ $$\displaystyle \theta $$ + b tan $$\displaystyle \theta $$ and $$y = b \sec$$ $$\displaystyle \theta $$ + a tan $$\displaystyle \theta $$, then $$\displaystyle x^{2}-y^{2}$$ is equal to 
  • $$\displaystyle 4ab \sec \theta \tan \theta $$
  • $$\displaystyle a^{2}-b^{2}$$
  • $$\displaystyle b^{2}-a^{2}$$
  • $$\displaystyle a^{2}+b^{2}$$
Consider the following:
1. $$\displaystyle \tan ^{2}\theta -\sin ^{2}\theta =\tan ^{2}\theta \sin ^{2}\theta $$
2.$$\displaystyle (1+\cot ^{2}\theta )(1-\cos \theta )(1+\cos \theta )=1$$
Which of the statements given below is correct ?
  • 1 only is the identity
  • 2 only is the identity
  • Both 1 and 2 are identities
  • Neither 1 nor 2 is the identity
If $$\sin{x}+\sin^{2}{x}=1$$, then $$\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2$$ is equals to
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
If $$\displaystyle \tan 2A= \cot (A-60^{\circ}),$$ where 2A is an acute angle, then the value of A is 
  • $$\displaystyle 30^{\circ}$$
  • $$\displaystyle 60^{\circ}$$
  • $$\displaystyle 50^{\circ}$$
  • $$\displaystyle 24^{\circ}$$
If $$\displaystyle x = a\cos ^{3}\theta $$ and y = b $$\displaystyle \sin ^{3}\theta ,$$ then the value of $$\displaystyle \left ( \frac{x}{a} \right )^{2/3}+\left ( \frac{y}{b} \right )^{2/3}$$ is 
  • 1
  • -2
  • 2
  • -1
The value of $$\displaystyle \cot 15^{\circ}\cot 16^{\circ}\cot 17^{\circ}.....\cot 73^{\circ}\cot 74^{\circ}\cot 75^{\circ}$$ is
  • $$\displaystyle \frac{1}{2}$$
  • $$0$$
  • $$1$$
  • $$-1$$
$$\displaystyle \dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}$$ equals 
  • $$\displaystyle \sec ^{2}A$$
  • -1
  • $$\displaystyle \cot ^{2}A$$
  • $$\displaystyle \tan ^{2}A$$
Using trigonometric identities $$\displaystyle 5 \text{ cosec} ^{2}\theta -5\text{ cot} ^{2}\theta -3$$ expressed as an integer is 
  • 5
  • 3
  • 2
  • 0
$$\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec} ^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}$$ is 
  • $$1$$
  • $$\displaystyle -\frac{20}{3}$$
  • $$\displaystyle \frac{10}{3}$$
  • $$5$$
In the given figure, $$tan x^o = \dfrac{4}{3}$$ and "T" is the mid-point of PR, calculate the length of PQ.
509006.jpg
  • $$\sqrt 8$$ m
  • $$9$$ m
  • $$\sqrt{59}$$ m
  • $$10$$ m
Evaluate: $$\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}$$
  • $$\displaystyle \sqrt{3}$$
  • $$2$$
  • $$1$$
  • $$\displaystyle \sqrt{2}$$
Evaluate: $$\sin { \left( { 50 }^{ o }+\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers