Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 6 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 6
sin
30
∘
+
cos
60
∘
equals
Report Question
0%
1
+
√
3
2
0%
√
3
0%
1
0%
None of these
Explanation
sin
30
0
+
cos
60
0
=
sin
30
0
+
sin
(
90
0
−
60
0
)
=
2
sin
30
0
=
2
×
1
2
=
1
In
△
A
B
C
,
∠
B
=
90
∘
. If
A
B
=
14
c
m
and
A
C
=
50
c
m
then
tan
A
equals:
Report Question
0%
24
25
0%
24
7
0%
7
24
0%
25
24
Explanation
In triangle ABC
B
=
90
0
Hence
A
C
=
50
c
m
will be the hypotenuse.
And
A
B
=
14
c
m
Therefore
B
C
=
√
A
C
2
−
A
B
2
c
m
=
48
c
m
Hence
t
a
n
A
=
p
e
r
p
e
n
d
i
c
u
l
a
r
b
a
s
e
=
B
C
A
B
=
48
14
=
24
7
The value of the expression
[
cosec(
75
∘
+
θ
)
−
sec
(
15
∘
−
θ
)
−
tan
(
55
∘
+
θ
)
+
cot
(
35
∘
−
θ
)
]
is
Report Question
0%
−
1
0%
0
0%
1
0%
3
2
Explanation
c
o
s
e
c
(
75
0
+
θ
)
−
sec
(
15
0
−
θ
)
−
tan
(
55
0
+
θ
)
+
cot
(
35
0
−
θ
)
=
sec
(
90
0
−
75
0
−
θ
)
−
sec
(
15
0
−
θ
)
−
cot
(
90
0
−
55
0
−
θ
)
+
cot
(
35
0
−
θ
)
=
sec
(
15
0
−
θ
)
−
sec
(
15
0
−
θ
)
−
cot
(
35
0
+
θ
)
+
cot
(
35
0
+
θ
)
=
0
If
sec
θ
=
√
p
2
+
q
2
q
, then the value of
p
sin
θ
−
q
cos
θ
p
sin
θ
+
q
cos
θ
Report Question
0%
p
q
0%
p
2
q
2
0%
p
2
−
q
2
p
2
+
q
2
0%
p
2
+
q
2
p
2
−
q
2
Explanation
sec
θ
=
h
y
p
o
t
e
n
u
s
e
b
a
s
e
=
√
p
2
+
q
2
q
Hence,
h
y
p
o
t
e
n
u
s
e
=
√
p
2
+
q
2
b
a
s
e
=
q
Therefore by applying, Pythagoras theorem, we get the altitude as
p
.
Hence
sin
θ
=
p
√
p
2
+
q
2
cos
θ
=
q
√
p
2
+
q
2
Hence substituting, the values in the above question we get
p
sin
θ
−
q
cos
θ
p
sin
θ
+
q
cos
θ
=
p
2
−
q
2
p
2
+
q
2
Is LHS=RHS?
{
1
+
cos
θ
+
sin
θ
1
+
cos
θ
−
sin
θ
}
2
=
1
+
sin
θ
1
−
sin
θ
,
1
−
cos
θ
≠
0
Report Question
0%
Yes
0%
No
0%
Ambiguos
0%
Data insufficient
Explanation
Given
LHS
{
1
+
cos
θ
+
sin
θ
1
+
cos
θ
−
sin
θ
}
2
1
+
cos
2
θ
+
sin
2
θ
+
2
cos
θ
+
2
sin
θ
+
2
cos
θ
sin
θ
1
+
cos
2
θ
+
sin
2
θ
+
2
cos
θ
−
2
sin
θ
−
2
cos
θ
sin
θ
2
+
2
cos
θ
+
2
sin
θ
+
2
cos
θ
sin
θ
2
+
2
cos
θ
−
2
sin
θ
−
2
cos
θ
sin
θ
(
1
+
cos
θ
)
+
sin
θ
(
1
+
cos
θ
)
(
1
+
cos
θ
)
−
sin
θ
(
1
+
cos
θ
)
(
1
+
cos
θ
)
(
1
+
sin
θ
)
(
1
+
cos
θ
)
(
1
−
sin
θ
)
⟹
1
+
sin
θ
1
−
sin
θ
If
sec
θ
+
tan
θ
=
P
, then the value of
sin
θ
is
Report Question
0%
P
2
+
1
2
P
0%
P
2
−
1
2
P
0%
P
2
−
1
P
2
+
1
0%
P
2
+
1
P
2
−
1
Explanation
sec
θ
+
tan
θ
=
P
⇒
(
sec
θ
+
tan
θ
)
2
=
P
2
⇒
sec
2
θ
+
tan
2
θ
+
2
tan
θ
sec
θ
=
P
2
⇒
2
tan
2
θ
+
1
+
2
sin
θ
cos
θ
=
P
2
⇒
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
cos
2
θ
=
P
2
Applying componendo and dividendo
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
−
cos
2
θ
2
sin
2
θ
+
cos
2
θ
+
2
sin
θ
−
cos
2
θ
=
P
2
−
1
P
2
+
1
⇒
2
sin
θ
(
sin
θ
+
1
)
2
(
sin
θ
+
1
)
=
P
2
−
1
P
2
+
1
⇒
sin
θ
=
P
2
−
1
P
2
+
1
Is LHS=RHS?
√
csc
θ
−
cot
θ
csc
θ
+
cot
θ
+
√
csc
θ
+
cot
θ
csc
θ
−
cot
θ
=
2
csc
θ
Say true or false.
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
L
H
S
=
√
csc
θ
−
cot
θ
csc
θ
+
cot
θ
+
√
csc
θ
+
cot
θ
csc
θ
−
cot
θ
=
csc
θ
−
cot
θ
+
csc
θ
+
cot
θ
√
csc
2
θ
−
cot
2
θ
=
2
csc
θ
1
=
2
csc
θ
=
R
H
S
If
sin
θ
+
c
o
sec
θ
=
2
, then the value of
sin
8
θ
+
c
o
sec
8
θ
is equal to
Report Question
0%
2
0%
2
8
0%
2
4
0%
none of these
Explanation
sin
θ
+
c
o
s
e
c
θ
=
2
⇒
sin
θ
+
1
sin
θ
=
2
Squaring both sides
(
sin
θ
+
1
sin
θ
)
2
=
2
2
⇒
sin
2
θ
+
1
sin
2
θ
+
2
sin
θ
1
sin
θ
=
4
⇒
sin
2
θ
+
1
sin
2
θ
=
2
Again squaring bot sides
(
sin
2
θ
+
1
sin
2
θ
)
2
=
2
2
⇒
sin
4
θ
+
1
sin
4
θ
=
2
Similarly
sin
8
θ
+
1
sin
8
θ
=
2
⇒
sin
8
θ
+
c
o
s
e
c
8
θ
=
2
If
cos
9
α
=
sin
α
, and
9
α
<
90
∘
, then
tan
5
α
=
.
.
.
.
.
Report Question
0%
1
√
3
0%
√
3
0%
1
0%
0
Explanation
cos
9
α
=
sin
α
,
So,
cos
9
α
=
cos
(
90
−
α
)
∴
9
α
=
90
−
α
⇒
9
α
+
α
=
90
∘
⇒
10
α
=
90
o
⇒
α
=
9
o
Now,
tan
5
α
=
tan
(
5
∗
9
o
)
=
tan
45
o
=
1
Therefore, Answer is
1
If
sin
x
+
sin
2
x
=
1
, then the value of
cos
2
x
+
cos
4
x
is
Report Question
0%
0
0%
2
0%
1
0%
None of these
Explanation
Find the value of the given expression
We have given,
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
1
−
sin
2
x
⇒
sin
x
=
cos
2
x
[
∵
sin
2
x
+
cos
2
x
=
1
]
Now value of required eq. is obtained by
Substituting the value of
cos
2
x
in given equation
cos
2
x
+
cos
4
x
=
sin
x
+
sin
2
x
=
1
⇒
cos
2
x
+
cos
4
x
=
1
Hence value of the given expression is 1
2
(
sin
6
θ
+
cos
6
θ
)
−
3
(
sin
4
θ
+
cos
4
θ
)
+
1
is equal to
Report Question
0%
2
0%
0
0%
4
0%
6
Explanation
2
(
sin
6
θ
+
cos
6
θ
)
−
3
(
sin
4
θ
+
cos
4
θ
)
+
1
Using
(
a
3
+
b
3
=
(
a
+
b
)
3
−
3
⋅
a
⋅
b
(
a
+
b
)
)
a
n
d
(
a
2
+
b
2
=
(
a
+
b
)
2
−
2
a
b
)
, we get
=
2
(
(
sin
2
θ
+
cos
2
θ
)
3
−
3
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
)
−
3
(
(
sin
2
θ
+
cos
2
θ
)
2
−
2
sin
2
θ
cos
2
θ
)
+
1
=
2
−
6
sin
2
θ
cos
2
θ
−
3
+
6
sin
2
θ
cos
2
θ
+
1
=
0
If
sin
θ
+
cos
θ
=
1
, then
sin
θ
cos
θ
=
.
Report Question
0%
0
0%
1
0%
2
0%
1
2
Explanation
Step 1: Apply relevant identity of a trigonometric function and simplify
We have,
sin
θ
+
cos
θ
=
1
Squaring both sides, we get,
(
sin
θ
+
cos
θ
)
2
=
(
1
)
2
⇒
sin
2
θ
+
cos
2
θ
+
2
sin
θ
.
cos
θ
=
1
[
∵
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
]
⇒
1
+
2
sin
θ
cos
θ
=
1
⇒
sin
θ
cos
θ
=
0
Hence, the answer is 0
Report Question
0%
Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
0%
Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
0%
Assertion is incorrect but Reason is correct
0%
Both Assertion and Reason are incorrect
Explanation
Given,
sin
θ
+
1
sin
θ
=
2
(
sin
θ
+
1
sin
θ
)
2
=
4
sin
2
θ
+
1
sin
2
θ
=
2
(
sin
2
θ
+
1
sin
2
θ
)
2
=
4
sin
4
θ
+
1
sin
4
θ
=
2
Therefore
sin
2
k
θ
+
1
sin
2
k
θ
=
2
where
k
=
1
,
2
,
.
.
N
Hence assertion is incorrect.
a
+
b
=
2
and
a
b
=
1
Then
a
=
b
=
1
satisfies the above equation.
Hence reason is correct.
Find
θ
, if
2
tan
θ
2
1
+
tan
2
θ
2
=
1
,
0
∘
<
θ
≤
90
∘
Report Question
0%
θ
=
60
∘
0%
θ
=
40
∘
0%
θ
=
90
∘
0%
θ
=
70
∘
Explanation
Put
θ
2
=
A
, then we must have
2
tan
A
1
+
tan
2
A
=
1
⇒
1
+
tan
2
A
−
2
tan
A
=
0
⇒
(
1
−
tan
A
)
2
=
0
⇒
tan
A
=
1
=
tan
45
∘
A
=
45
∘
We know
θ
2
=
A
=
45
∘
⇒
θ
2
=
45
∘
⇒
θ
=
90
∘
If
(
sec
A
−
tan
A
)
(
sec
B
−
tan
B
)
(
sec
C
−
tan
C
)
=
(
sec
A
+
tan
A
)
(
sec
B
+
tan
B
)
(
sec
C
+
tan
C
)
represents each side of a equilateral triangle, then each side is equal to -
Report Question
0%
0
0%
1
0%
−
1
0%
±
1
Explanation
Let
(
sec
A
+
tan
A
)
(
sec
B
+
tan
B
)
(
sec
C
+
tan
C
)
=
x
............(i)
∴
(
sec
A
−
tan
A
)
(
sec
B
−
tan
B
)
(
sec
C
−
tan
C
)
=
x
.............(ii)
Multiplying Eqs. (i) and (ii), we get
(
sec
2
A
−
tan
2
A
)
(
sec
2
B
−
tan
2
B
)
(
sec
2
C
−
tan
2
C
)
=
x
2
...........
(
sec
2
A
−
tan
2
A
)
=
1
or
x
2
=
1
∴
x
=
±
1
Hence, each side is equal to
±
1
.
If
sin
θ
+
sin
2
θ
=
1
,
then
cos
2
θ
+
cos
4
θ
=
Report Question
0%
1
0%
√
2
0%
0
0%
2
Explanation
Given:
sin
θ
+
sin
2
θ
=
1
∴
sin
θ
=
1
−
sin
2
θ
∴
sin
θ
=
cos
2
θ
Now,
cos
2
θ
+
cos
4
θ
=
sin
θ
+
sin
2
θ
=
1
If
4
sin
θ
=
3
cos
θ
,
Then
sec
2
θ
4
(
1
−
tan
2
θ
)
is
Report Question
0%
25
16
0%
25
28
0%
1
4
0%
16
25
Explanation
Given:
4
sin
θ
=
3
cos
θ
⟹
tan
θ
=
3
4
Now,
sec
2
θ
4
(
1
−
tan
2
θ
)
=
1
+
tan
2
θ
4
(
1
−
tan
2
θ
)
=
1
+
(
3
4
)
2
4
[
1
−
(
3
4
)
2
]
=
16
+
9
4
(
16
−
9
)
=
25
28
If
tan
θ
=
x
y
,
then
x
sin
θ
+
y
cos
θ
x
sin
θ
−
y
cos
θ
is equal to
Report Question
0%
x
2
+
y
2
x
2
−
y
2
0%
x
2
−
y
2
x
2
+
y
2
0%
x
√
x
2
+
y
2
0%
y
√
x
2
+
y
2
Explanation
x
sin
θ
+
y
cos
θ
x
sin
θ
−
y
cos
θ
Multiply and divide by
cos
θ
=
x
sin
θ
cos
θ
+
y
cos
θ
cos
θ
x
sin
θ
cos
θ
−
y
cos
θ
cos
θ
=
x
×
x
y
+
y
x
×
x
y
−
y
=
x
2
+
y
2
y
x
2
−
y
2
y
=
x
2
+
y
2
x
2
−
y
2
If
x
=
a
sec
θ
+ b tan
θ
and
y
=
b
sec
θ
+ a tan
θ
, then
x
2
−
y
2
is equal to
Report Question
0%
4
a
b
sec
θ
tan
θ
0%
a
2
−
b
2
0%
b
2
−
a
2
0%
a
2
+
b
2
Explanation
Given,
x
=
a
sec
θ
+
b
tan
θ
,
y
=
b
sec
θ
+
a
tan
θ
x
2
−
y
2
=
(
a
sec
θ
+
b
tan
θ
)
2
−
(
b
sec
θ
+
a
tan
θ
)
2
=
a
2
sec
2
θ
+
2
a
b
sec
θ
tan
θ
+
b
2
t
a
n
2
θ
−
(
b
2
sec
2
θ
+
2
a
b
sec
θ
tan
θ
+
a
2
tan
2
θ
)
=
(
a
2
−
b
2
)
sec
2
θ
+
(
b
2
−
a
2
)
tan
2
θ
=
(
a
2
−
b
2
)
(
sec
2
θ
−
tan
2
θ
)
.
.
.
.
.
[
∵
a
2
−
b
2
=
−
(
b
2
−
a
2
)
]
=
a
2
−
b
2
.
.
.
.
.
.
(
∵
sec
2
θ
−
tan
2
θ
=
1
)
Hence option
′
B
′
is the answer.
Consider the following:
1.
tan
2
θ
−
sin
2
θ
=
tan
2
θ
sin
2
θ
2.
(
1
+
cot
2
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
=
1
Which of the statements given below is correct ?
Report Question
0%
1 only is the identity
0%
2 only is the identity
0%
Both 1 and 2 are identities
0%
Neither 1 nor 2 is the identity
Explanation
1.
tan
2
θ
−
sin
2
θ
=
sin
2
θ
cos
2
θ
−
sin
2
θ
=
sin
2
θ
−
sin
2
θ
cos
2
θ
cos
2
θ
=
sin
2
θ
(
1
−
cos
2
θ
)
cos
2
θ
=
sin
2
θ
cos
2
θ
×
sin
2
θ
=
tan
2
θ
sin
2
θ
2.
(
1
+
cot
2
θ
)
(
1
−
cos
θ
)
(
1
+
c
o
s
θ
)
=
(
1
+
cot
2
θ
)
(
1
−
cos
2
θ
)
=
(
1
+
cos
2
θ
sin
2
θ
)
(
1
−
cos
2
θ
)
=
(
sin
2
θ
+
cos
2
θ
sin
2
θ
)
×
sin
2
θ
.......[Since,
(
1
−
cos
2
θ
=
sin
2
θ
)
]
=
1
.......[Since,
(
cos
2
θ
+
sin
2
θ
=
1
)
]
Therefore, both are Identities.
If
sin
x
+
sin
2
x
=
1
, then
cos
12
x
+
3
cos
10
x
+
3
cos
8
x
+
cos
6
x
−
2
is equals to
Report Question
0%
0
0%
1
0%
−
1
0%
2
Explanation
Given
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
cos
2
x
Now,
cos
12
x
+
3
cos
10
x
+
3
cos
8
x
+
cos
6
x
−
2
=
sin
6
x
+
3
sin
5
x
+
3
sin
4
x
+
sin
3
x
−
2
=
(
sin
2
x
)
3
+
3
(
sin
2
x
)
2
sin
x
+
3
(
sin
2
x
)
2
+
sin
2
x
sin
x
−
2
=
(
sin
2
x
)
3
+
3
(
sin
2
x
)
2
sin
x
+
3
sin
2
x
(
sin
x
)
2
+
sin
3
x
−
2
=
(
sin
2
x
+
sin
x
)
3
−
2
=
1
−
2
=
−
1
If
tan
2
A
=
cot
(
A
−
60
∘
)
,
where 2A is an acute angle, then the value of A is
Report Question
0%
30
∘
0%
60
∘
0%
50
∘
0%
24
∘
Explanation
tan
2
A
=
cot
(
A
−
60
∘
)
cot
(
90
−
2
A
)
=
cot
(
A
−
60
)
90
−
2
A
=
A
−
60
3
A
=
150
A
=
50
∘
If
x
=
a
cos
3
θ
and y = b
sin
3
θ
,
then the value of
(
x
a
)
2
/
3
+
(
y
b
)
2
/
3
is
Report Question
0%
1
0%
-2
0%
2
0%
-1
Explanation
Given:
x
=
a
cos
3
θ
and
y
=
b
sin
3
θ
∴
x
a
=
cos
3
θ
and
y
b
=
sin
3
θ
Hence
(
x
a
)
2
3
+
(
y
b
)
2
3
=
(
cos
3
θ
)
2
3
+
(
sin
3
θ
)
2
3
=
(
cos
θ
)
2
+
(
sin
θ
)
2
=
sin
2
θ
+
cos
2
θ
=
1
The value of
cot
15
∘
cot
16
∘
cot
17
∘
.
.
.
.
.
cot
73
∘
cot
74
∘
cot
75
∘
is
Report Question
0%
1
2
0%
0
0%
1
0%
−
1
Explanation
\cot { 15° } \cot { 16° } \cot { 17° } .........\cot { 73° } \cot { 74° } \cot { 75° }
=\cot { \left( 90°-75° \right) } \cot { \left( 90°-74° \right) } \cot { \left( 90°-73° \right) } ......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
=\tan { 75° } \tan { 74° } \tan { 73° } .......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
=(\tan { 75° }.\cot75^o) (\tan { 74° }.\cot74^o)( \tan { 73° }.\cot73^o) .......\cot45^o
=1\times1\times1\times.........\times1
=1
Hence, the answer is
1.
\displaystyle \dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}
equals
Report Question
0%
\displaystyle \sec ^{2}A
0%
-1
0%
\displaystyle \cot ^{2}A
0%
\displaystyle \tan ^{2}A
Explanation
\displaystyle \frac{1+\tan ^{2}A}{1+\cot ^{2}A}
=
\displaystyle \dfrac{1+\dfrac{sin ^{2}A}{cos ^{2}A}}{1+\dfrac{cos ^{2}A}{sin ^{2}A}}
=
\displaystyle \dfrac{\dfrac{cos^2 A + sin ^{2}A}{cos ^{2}A}}{\dfrac{ sin^2 A + cos ^{2}A}{sin ^{2}A}}
=
\displaystyle \dfrac{\sin^2 A}{\cos^2 A}
=
\displaystyle \tan^2 A
Using trigonometric identities
\displaystyle 5 \text{ cosec} ^{2}\theta -5\text{ cot} ^{2}\theta -3
expressed as an integer is
Report Question
0%
5
0%
3
0%
2
0%
0
Explanation
The given equation is
\displaystyle 5 \text{ cosec} ^{2}\theta -5\cot ^{2}\theta -3
=
5 ( \text{cosec} ^{2}\theta - \cot ^{2}\theta) -3
=
5 - 3
(since,
\text{cosec}^2 \theta - \text{cot}^2 \theta = 1
)
=
2
\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec} ^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}
is
Report Question
0%
1
0%
\displaystyle -\frac{20}{3}
0%
\displaystyle \frac{10}{3}
0%
5
Explanation
\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec}^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}
= \displaystyle \frac{4}{3}(\sqrt 3)^2+3(\frac {\sqrt 3}{2})^2-2(\frac {2}{\sqrt 3})^2-\frac{3}{4}(\frac {1}{\sqrt 3})^2
=\displaystyle \frac{4}{3}\times 3+3\times \frac {3}{4}-2\times \frac {4}{3}-\frac{3}{4}\times \frac {1}{3}
=\displaystyle 4+ \frac {9}{4}- \frac {8}{3}-\frac{1}{4}
=\displaystyle \frac {10}{3}
Option C is correct.
In the given figure,
tan x^o = \dfrac{4}{3}
and "T" is the mid-point of PR, calculate the length of PQ.
Report Question
0%
\sqrt 8
m
0%
9
m
0%
\sqrt{59}
m
0%
10
m
Explanation
In
\triangle RST
\Rightarrow \tan { x=\dfrac { RT }{ SR } }
\Rightarrow \dfrac { 4 }{ 3 } =\dfrac { RT }{ 3 }
\Rightarrow RT=4m
\therefore PR=2RT=8m
Now,
\triangle PSQ
is a right angled triangle, such that
\Rightarrow PQ{ PR }^{ 2 }+{ PQ }^{ 2 }={ PQ }^{ 2 }
{ \Rightarrow PQ }^{ 2 }+{ PR }^{ 2 }={ RQ }^{ 2 }={ \left( 8 \right) }^{ 2 }+{ \left( 6 \right) }^{ 2 }=64+364
\Rightarrow PQ=\sqrt { 100 } =10m
Hence, the answer is
10m.
Evaluate:
\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
Report Question
0%
\displaystyle \sqrt{3}
0%
2
0%
1
0%
\displaystyle \sqrt{2}
Explanation
\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\tan (90^{\circ}-23^{\circ}).\tan (90^{\circ}-7^{\circ})
\displaystyle \left [ \because \tan (90^{\circ}-\theta )=\cot \theta \right ]
=
\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\cot 23^{\circ}.\cot 7^{\circ}
\displaystyle \tan 7^{\circ}.\cot 7^{\circ}\tan 23^{\circ}.\cot 23^{\circ}.\sqrt{3}
\displaystyle (\because \tan \theta .\cot \theta =1)
\displaystyle =1\times 1\times \sqrt{3}=\sqrt{3}
Evaluate:
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
=\sin { \left[ { 90 }^{ o }-{ 40 }^{ o }+\theta \right] } -\cos { \left( { 40 }^{ o }-\theta \right) } +(\tan { { 1 }^{ o } } \tan {{89}^{o}})(\tan{{10}^{o}}\tan{{80}^{o}})(\tan {{20}^{o}}\tan {{70}^{o}})
=\sin {\left[{90}^{o}-({40}^{o}-\theta) \right]} -\cos {\left({40}^{o}-\theta \right)} +\tan {({90}^{o}} -{ 89 }^{ o })\tan { { 89 }^{ o } } \tan { { (90 }^{ o } } -{ 80 }^{ o })\tan { { 80}^{ o } } \tan { { (90 }^{ o } } -{ 70 }^{ o })\tan { { 70 }^{ o } }
=\cos { \left( { 40 }^{ o }-\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\cot { { 89 }^{ o } } \tan { { 89 }^{ o } } \cot { { 80 }^{ o } } \tan { { 80 }^{ o } } \cot { { 70 }^{ o } } \tan { { 70 }^{ o } }
=0+1
\because \cot {\theta} \tan {\theta}=1
]
=1
Hence,
\sin { \left( { 50 }^{ o }+\theta \right) } -\cos { \left( { 40 }^{ o }-\theta \right) } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}=1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page