Processing math: 7%

CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 7 - MCQExams.com

Evaluate: sinθcosθsin(90oθ)cos(90oθ)+cosθsinθcos(90oθ)sin(90oθ)+sin227o+sin263ocos240o+cos250o
  • 1
  • 2
  • 4
  • 3
If cos(α+β)=0, then sin(αβ), can be reduced to
  • cosβ
  • cos2β
  • cos2α
  • sin2α
Evaluate: \cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ \sec ^{ 2 }{ { 50 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } }  } +2\text{cosec} ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } }
  • 2
  • -1
  • -2
  • 3
Evaluate:
\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } }  }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 }  } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } }
  • \cfrac{6}{5}
  • \cfrac{7}{3}
  • \cfrac{9}{2}
  • \cfrac{1}{4}
\displaystyle \cos ^{2}5^{\circ}+\cos ^{2}10^{\circ}+\cos ^{2}15^{\circ}+...+\cos ^{2}85^{\circ}=
  • 6
  • 8
  • 9
  • \displaystyle 8\frac{1}{2}
\displaystyle \tan ^{2}B-\sin^{2} B is equal to
  • \displaystyle \sec ^{2}B
  • \displaystyle 1+\cos ^{2}B
  • \displaystyle \tan ^{2}B\sin ^{2}B
  • \displaystyle \sec ^{2}B-\sin ^{2}B
If \displaystyle \tan 32^0.\cot (90^0-\theta )=1 find \theta .
  • \displaystyle 58^{\circ}
  • \displaystyle 122^{\circ}
  • \displaystyle 32^{\circ}
  • \displaystyle 158^{\circ}
The value of \displaystyle \csc (65^0+\theta )-\sec (25^0-\theta )-\tan (55^0-\theta )+\cot (35^0+\theta ) is
  • 0
  • -1
  • \displaystyle \theta +90
  • None of these
Find the value of 
\displaystyle 4\left( { \sin }^{ 4 }{ 30 }^{ o }+{ \cos }^{ 4 }{ 60 }^{ o } \right) -3\left( { \sin }^{ 2 }{ 45 }^{ o }-2{ \cos }^{ 2 }{ 45 }^{ o } \right) 
  • 1
  • 2
  • 0
  • 3
If \displaystyle \sqrt{2}\cos A=1 then the value of \displaystyle \tan ^{4}A+\cot ^{4}A
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{3}
  • 2
  • 1
The value of \displaystyle \frac{2\sin 67^{\circ}}{\cos 23^{\circ}}-\frac{\cot 40^{\circ}}{\tan 50^{\circ}}
  • 0
  • 1
  • -1
  • None
Evaluate: \displaystyle 3{\cot }^{ 2 }{ 60 }^{ o }+{ \sec }^{ 4 }{ 45 }^{ o }-{ \tan }^{ 2 }{ 60 }^{ o }
  • 0
  • 1
  • 2
  • 3
The value of tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;89^{\circ} is
  • 1
  • 0
  • \infty
  • \displaystyle\frac{1}{2}
The value of \displaystyle \tan { { 5 }^{ o } } .\tan { { 85 }^{ o } } .\tan { { 31 }^{ o } } .\tan { { 5 }9^{ o } } .\tan { { 45 }^{ o } }  is :
  • 0
  • 2
  • 1
  • \displaystyle \frac { 1 }{ 2 }
If \displaystyle 5\sin { A } =3, then the value of \displaystyle { \sec }^{ 2 }A-{ \tan }^{ 2 }A is :
  • 0
  • 5
  • 3
  • 1
The value of  \displaystyle { \text{cosec} }^{ 2 }\left( { 90 }^{ o }-\theta  \right) -{ \tan }^{ 2 }\theta  is :
  • 2
  • 3
  • 0
  • 1
Find the value of \displaystyle \cos { \left( { 90 }^{ o }-A \right)  } \tan { \left( { 90 }^{ o }-A \right)  } \sec { \left( { 90 }^{ o }-A \right)  } 
  • \displaystyle \cot{ A }
  • \displaystyle \tan { A }
  • \displaystyle \cos { A }
  • \displaystyle \text{cosec }A
The value of \displaystyle \frac { \sin { { 60 }^{ o } }  }{ { \cos }^{ 2 }{ 45 }^{ o } } -\cot{ { 30 }^{ o } }+5\cos { { 90 }^{ o } }  is :
  • 0
  • 1
  • 2
  • \displaystyle \frac { 1 }{ 2 }
What is the value of \displaystyle { \sin }^{ 2 }{ 35 }^{ o }+{ \sin }^{ 2 }{ 55 }^{ o } ?
  • 0
  • 1
  • \displaystyle \frac { 1 }{ 2 }
  • 2
If  \displaystyle \theta ={ 45 }^{ o }, then \displaystyle2 \sin { \theta  } cos{ \theta } is :
  • 0
  • 1
  • 2
  • None of these
If \displaystyle \frac { x\text{ cosec }^{ 2 }{ 30 }^{ o }{ \sec }^{ 2 }{ 45 }^{ o } }{ 8{ \cos }^{ 2 }{ 45 }^{ o }{ \sin }^{ 2 }{ 90 }^{ o } } ={ \tan }^{ 2 }{ 60 }^{ o }-{ \tan }^{ 2 }{ 45 }^{ o }, then x is :
  • 1
  • -1
  • 2
  • 0
Evaluate: \displaystyle \sin { { 40 }^{ o } } .\sec{ { 50 }^{ o } }-\cfrac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } +1
  • 0
  • 1
  • -1
  • 2
The value of  \displaystyle { \cos }^{ 2 }\left( { 90 }^{ o }-\theta  \right) +{ \cos }^{ 2 }\theta  is :
  • 3
  • 0
  • 2
  • 1
The value of tan 1^{\circ} tan 2^{\circ} tan 3^{\circ}\times..........\timestan 89^{\circ} is
  • 0
  • 1
  • 2
  • \dfrac {1}{2}
The value of \displaystyle \frac { \cos { { 75 }^{ o } }  }{ \sin { { 15 }^{ o } }  } +\frac { \sin { { 12 }^{ o } }  }{ \cos { { 78 }^{ o } }  } -\frac { \cos { { 18 }^{ o } }  }{ \sin { { 72 }^{ o } }  }  is :
  • 0
  • 2
  • 3
  • 1
The value of \displaystyle \frac { \cos { { 70 }^{ o } }  }{ \sin { { 20 }^{ o } }  } +\frac { \cos { { 59 }^{ o } }  }{ \sin { { 31 }^{ o } }  } -8{ \sin }^{ 2 }{ 30 }^{ o } is :
  • 1
  • 2
  • 0
  • 3
If \displaystyle \sin \left ( A+B \right ) =\frac{\sqrt{3}}{2} and \displaystyle \cot \left ( A-B \right )=1, then find A
  • \displaystyle 27\frac{1^{\circ}}{2}
  • \displaystyle 35\frac{1^{\circ}}{2}
  • \displaystyle 52\frac{1^{\circ}}{2}
  • \displaystyle 55\frac{1^{\circ}}{2}
The value of \displaystyle \frac { \sin { { 70 }^{ o } }  }{ \cos { { 20 }^{ o } }  } +\frac { \text{cosec }{ 20 }^{ o } }{ \sec { { 70 }^{ o } }  } -2\cos { { 70 }^{ o } } \text{cosec }{ 20 }^{ o } is :
  • 1
  • 2
  • 0
  • 3
The value of \displaystyle \frac { 2\cos { { 67 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } is :
  • 1
  • 0
  • 4
  • 2
The value of \displaystyle \sec { { 41 }^{ o } } \sin { { 49 }^{ o }+ } \cos { { 49 }^{ o } } \text{cosec }{ 41 }^{ o } is :
  • 2
  • 1
  • 0
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers