Processing math: 7%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 7 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 7
Evaluate:
sin
θ
cos
θ
sin
(
90
o
−
θ
)
cos
(
90
o
−
θ
)
+
cos
θ
sin
θ
cos
(
90
o
−
θ
)
sin
(
90
o
−
θ
)
+
sin
2
27
o
+
sin
2
63
o
cos
2
40
o
+
cos
2
50
o
Report Question
0%
1
0%
2
0%
4
0%
3
Explanation
sin
θ
cos
θ
sin
(
90
o
−
θ
)
cos
(
90
o
−
θ
)
=
sin
θ
cos
θ
cos
θ
sin
θ
.
.
.
.
(
i
)
cos
θ
sin
θ
cos
(
90
o
−
θ
)
sin
(
90
o
−
θ
)
=
cos
θ
sin
θ
sin
θ
cos
θ
.
.
.
.
.
.
(
i
i
)
sin
2
27
o
+
sin
2
63
o
cos
2
40
o
+
cos
2
50
o
=
sin
2
27
o
+
sin
2
(
90
o
−
27
o
)
cos
2
40
o
+
cos
2
(
90
o
−
40
o
)
=
sin
2
27
o
cos
2
27
o
cos
2
40
o
+
sin
2
40
o
=
1
1
Using
(
i
)
,
(
i
i
)
,
(
i
i
i
)
we get
sin
θ
sin
θ
+
cos
θ
cos
θ
+
1
sin
2
θ
+
cos
2
θ
+
1
=
1
+
1
=
2
If
cos
(
α
+
β
)
=
0
, then
sin
(
α
−
β
)
, can be reduced to
Report Question
0%
cos
β
0%
cos
2
β
0%
cos
2
α
0%
sin
2
α
Explanation
Step 1 : Use the triginometric identities for angle transformation
Given ,
cos
(
α
+
β
)
=
0
\Rightarrow \cos (\alpha +\beta )=\cos90\quad \quad \quad \quad \boldsymbol{[\because \cos 90^\circ=0]}
\Rightarrow \alpha +\beta =90
\Rightarrow\alpha =90-\beta
\therefore\ sin (\alpha -\beta )\\ =\sin(90-2\beta )=\cos2\beta\ \ \ \quad \quad \quad \boldsymbol{[\because \sin(90-\theta )=\cos\theta]}
\textbf{Hence , option(B) is the correct answer}
Evaluate:
\cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } } }{ \sec ^{ 2 }{ { 50 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } } } +2\text{cosec} ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } }
Report Question
0%
2
0%
-1
0%
-2
0%
3
Explanation
\cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } } }{ \sec ^{ 2 }{ { 50 }^{ o } } +\cot ^{ 2 }{ { 40 }^{ o } } } +2\csc ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } }
=\cfrac { \cos ^{ 2 }{ { ({ 90 }^{ o }-70 }^{ o }) } +\cos ^{ 2 }{ { 70 }^{ o } } }{ \sec ^{ 2 }{ { ({ 90 }^{ o }-40 }^{ o } } )+\cot ^{ 2 }{ { 40 }^{ o } } }
+2\csc ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { ({ 90 }^{ o }-58^{ o }) } -4(\tan { { 13 }^{ o } } \tan { { 77 }^{ o } } )(\tan { { 37 }^{ o } } \tan { { 53 }^{ o } } )\tan { { 45 }^{ o } }
=\cfrac { \sin ^{ 2 }{ { 70 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } } }{ co\sec ^{ 2 }{ { 40 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } } } +2(\csc ^{ 2 }{ { 58 }^{ o } } -\cot ^{ 2 }{ { 58 }^{ o } }) -4[\tan { ({ 90 }^{ o }-77^{ o }) } \tan { { 77 }^{ o } } ][\tan { ({ 90 }^{ o }-53^{ o }) } \tan { { 53 }^{ o } } ][1]
=\cfrac{1}{1}+2-4
=-1
Evaluate:
\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } } }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } } } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 } } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } }
Report Question
0%
\cfrac{6}{5}
0%
\cfrac{7}{3}
0%
\cfrac{9}{2}
0%
\cfrac{1}{4}
Explanation
\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } } }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } } } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 } } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } }
\Rightarrow \cfrac { \sec ^{ 2 }{ { (90 }^{ o }- } { 36 }^{ o })-\cot ^{ 2 }{ { 36 }^{ o } } }{ co\sec ^{ 2 }{ { (90 }^{ o }- } { 33 }^{ o })-\tan ^{ 2 }{ { 33 }^{ o } } } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { (90 }^{ o }- } { 38 }^{ o })-\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 } } \tan { \left( { 90 }^{ o }-{ 73 }^{ o } \right) } \tan { { 73 }^{ o } } \tan { { 60 }^{ o } }
\Rightarrow \cfrac { co\sec ^{ 2 }{ { 36 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } } }{ \sec ^{ 2 }{ { 33 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } } } +2\sin ^{ 2 }{ { 38 }^{ o } } co\sec ^{ 2 }{ { 38 }^{ o } } -{ \left( \cfrac { 1 }{ \sqrt { 2 } } \right) }^{ 2 }+\cfrac { 2 }{ \sqrt { 3 } } \cot { { 73 }^{ o } } \tan { { 73 }^{ o } } \times \sqrt { 3 }
\Rightarrow \cfrac { 1 }{ 1 } +2\sin ^{ 2 }{ { 38 }^{ o } } \times \cfrac { 1 }{ \sin ^{ 2 }{ { 38 }^{ o } } } -\cfrac { 1 }{ 2 } +\cfrac { 2 }{ \sqrt { 3 } } \times \cfrac { 1 }{ \tan { { 73 }^{ o } } } \times \tan { { 73 }^{ o } } \times \sqrt { 3 }
\quad [\because \quad co\sec ^{ 2 }{ 0 } -\cot ^{ 2 }{ 0 } =1,\sec ^{ 2 }{ 0 } -\tan ^{ 2 }{ 0 } =1]
\Rightarrow 1+2-\cfrac{1}{2}+2=5-\cfrac{1}{2}
\Rightarrow \cfrac{9}{2}
\displaystyle \cos ^{2}5^{\circ}+\cos ^{2}10^{\circ}+\cos ^{2}15^{\circ}+...+\cos ^{2}85^{\circ}=
Report Question
0%
6
0%
8
0%
9
0%
\displaystyle 8\frac{1}{2}
Explanation
\displaystyle \left ( \cos ^{2}5^{\circ}+\cos ^{2}85^{\circ} \right )+\left ( \cos ^{2}10+\cos ^{2}80^{\circ} \right )+\cdot \cdot \cdot +\cos ^{2}45^{\circ}+\cdot \cdot \cdot
=
\displaystyle \left ( \cos ^{2} 5^{\circ}+\sin ^{2}5^{\circ}\right )+\left ( \cos ^{2}10^{\circ} \right )+\cdot \cdot \cdot +\cos ^{2}45^{\circ}+\cdot \cdot \cdot \left [ using\cos \left ( 90^{\circ}-\theta \right ) =\sin \theta \right ]
=
\displaystyle 1+1+1+\left ( 8times \right )+\frac{1}{2}=8\frac{1}{2}
\displaystyle \tan ^{2}B-\sin^{2} B
is equal to
Report Question
0%
\displaystyle \sec ^{2}B
0%
\displaystyle 1+\cos ^{2}B
0%
\displaystyle \tan ^{2}B\sin ^{2}B
0%
\displaystyle \sec ^{2}B-\sin ^{2}B
Explanation
\displaystyle \tan ^{2}B-\sin^{2} B = \frac {\sin^{2} B }{\cos^{2} B } - \sin^{2} B
\displaystyle = \frac {\sin^{2} B - \sin^{2} B \cos^{2} B }{\cos^{2} B }
\displaystyle = \sin^{2} B (\frac {1 - \cos^{2} B }{\cos^{2} B } )
\displaystyle = \sin^{2} B (\frac { \sin^{2} B }{\cos^{2} B } )
\displaystyle = \sin^{2} B \tan^{2} B
If
\displaystyle \tan 32^0.\cot (90^0-\theta )=1
find
\theta
.
Report Question
0%
\displaystyle 58^{\circ}
0%
\displaystyle 122^{\circ}
0%
\displaystyle 32^{\circ}
0%
\displaystyle 158^{\circ}
Explanation
Given,
\tan 32^0.\cot (90^0-\theta )=1
\Rightarrow \tan 32^0=\dfrac1{\cot (90^0-\theta )}
\Rightarrow \tan 32^0=\tan (90^0-\theta )
\Rightarrow (90^0-\theta )=32^0
\Rightarrow \theta=90^0-32^0
=58^0
Option A is correct.
The value of
\displaystyle \csc (65^0+\theta )-\sec (25^0-\theta )-\tan (55^0-\theta )+\cot (35^0+\theta )
is
Report Question
0%
0
0%
-1
0%
\displaystyle \theta +90
0%
None of these
Explanation
Given,
\displaystyle \csc (65^{\circ}+\theta )-\sec (25-\theta )-\tan (55-\theta )+\cot (35+\theta )
= \displaystyle \csc (90^{\circ}-25^{\circ}+\theta )-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\cot (90^{\circ}-55^{\circ}+\theta )
= \displaystyle \csc (90^{\circ}-(25^{\circ}-\theta) )-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\cot (90^{\circ}-(55^{\circ}-\theta) )
= \displaystyle \sec (25^{\circ}-\theta)-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\tan (55^{\circ}-\theta )
=0
Find the value of
\displaystyle 4\left( { \sin }^{ 4 }{ 30 }^{ o }+{ \cos }^{ 4 }{ 60 }^{ o } \right) -3\left( { \sin }^{ 2 }{ 45 }^{ o }-2{ \cos }^{ 2 }{ 45 }^{ o } \right)
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
4(sin^{4}30^{0}+cos^{4}60^{0})-3(sin^{2}45^{0}-2cos^{2}45^{0})
Put the value of
\sin
and
\cos
we get:
=
\left [ \left ( \frac{1}{2} \right )^{2}+\left ( \frac{1}{2} \right )^{4} \right ]-3\left [ \left ( \frac{1}{\sqrt{2}} \right )^{2}-2\left ( \frac{1}{\sqrt{2}} \right )^{2} \right ]
=
4\left ( \frac{1}{16}+\frac{1}{16} \right )-3\left ( \frac{1}{2}-2(\frac{1}{2}) \right )
=
\frac{1}{2}+\frac{3}{2}=2
If
\displaystyle \sqrt{2}\cos A=1
then the value of
\displaystyle \tan ^{4}A+\cot ^{4}A
Report Question
0%
\displaystyle \frac{1}{2}
0%
\displaystyle \frac{1}{3}
0%
2
0%
1
Explanation
Since,
\displaystyle \sqrt{2}\cos A=1
\Rightarrow \displaystyle \cos A=\frac {1}{\sqrt{2}}
Since,
\cos \theta = \frac {\text {base}}{\text {hypotenuse}}
Here, base = 1 and hypotenuse =
\sqrt 2
using pythagoras
H^{2} = P^{2} + B^{2}
(\sqrt 2)^{2} = P^{2} + 1^{2}
P= 1
\therefore \tan A = \frac {\text {perpendicular}}{\text {base}}= 1
and
\cot A = \frac {\text {base}}{\text {perpendicular}}= 1
\therefore \displaystyle \tan ^{4}A+\cot ^{4}A = 1^{4} + 1^{4} = 2
Option C is correct.
The value of
\displaystyle \frac{2\sin 67^{\circ}}{\cos 23^{\circ}}-\frac{\cot 40^{\circ}}{\tan 50^{\circ}}
Report Question
0%
0
0%
1
0%
-1
0%
None
Explanation
\displaystyle \frac{2\sin 67^0}{\cos 23^0}-\frac{\cot 40^0}{\tan 50^0}=\displaystyle \frac{2\sin (90^0-23^0)}{\cos 23^0}-\frac{\cot (90^0-50^0)}{\tan50^0}
=\displaystyle \frac{2\cos 23^0}{\cos 23^0}-\frac{\tan50^0}{\tan 50^0}
=2-1=1
Option B is correct.
Evaluate:
\displaystyle 3{\cot }^{ 2 }{ 60 }^{ o }+{ \sec }^{ 4 }{ 45 }^{ o }-{ \tan }^{ 2 }{ 60 }^{ o }
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
Given that:
3\cot ^{ 2 }{ { 60^o } } +\sec ^{ 4 }{ { 45 ^o} } -\tan ^{ 2 }{ { 60^\circ } }
=3\cot ^{ 2 }{ \left( { 90 ^o- } { 30 ^o } \right) } +\sec ^{ 4 }{{ 45 ^\circ } } -\tan ^{ 2 }{ { 60^o } }
=3\times( \dfrac { 1 }{ \sqrt { 3 } } )^2-(\sqrt { 3 })^2 +{ \left( \sqrt { 2 } \right) }^{ 2 }
=1 -3+2
=0
The value of
tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;89^{\circ}
is
Report Question
0%
1
0%
0
0%
\infty
0%
\displaystyle\frac{1}{2}
Explanation
tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;45^{\circ}.....tan\;87^{\circ}\;tan\;88^{\circ}\;tan\;89^{\circ}
=tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}.....tan\;45^{\circ}.....cot\;3^{\circ}\;cot\;2^{\circ}\;cot\;1^{\circ}=1
The value of
\displaystyle \tan { { 5 }^{ o } } .\tan { { 85 }^{ o } } .\tan { { 31 }^{ o } } .\tan { { 5 }9^{ o } } .\tan { { 45 }^{ o } }
is :
Report Question
0%
0
0%
2
0%
1
0%
\displaystyle \frac { 1 }{ 2 }
Explanation
The value of
\tan 5^o. \tan 85^o.\tan 31^o. \tan 59^o.\tan 45^o
is
=\tan (90-85)^o.\tan 85^o. \tan (90-59)^o. \tan 45^o
=\cot 85^o.\tan 85^o. \cot 59^o. \tan 59^o. \tan 45^o
=\tan 45^o
=1
If
\displaystyle 5\sin { A } =3
, then the value of
\displaystyle { \sec }^{ 2 }A-{ \tan }^{ 2 }A
is :
Report Question
0%
0
0%
5
0%
3
0%
1
Explanation
Given,
\displaystyle \sin { A } =\frac { 3 }{ 5 } =\frac { p }{ h }
\displaystyle \therefore b=\sqrt { 25-9 } =\sqrt { 16 } =4
\displaystyle \sec { A } =\frac { h }{ b } =\frac { 5 }{ 4 } ,
\displaystyle \tan { A } =\frac { p }{ b } =\frac { 3 }{ 4 }
Therefore,
\displaystyle { \sec }^{ 2 }A-{ \tan }^{ 2 }A={ \left( \frac { 5 }{ 4 } \right) }^{ 2 }-{ \left( \frac { 3 }{ 4 } \right) }^{ 2 }
\displaystyle =\frac { 25 }{ 16 } -\frac { 9 }{ 16 } =\frac { 16 }{ 16 } =1
The value of
\displaystyle { \text{cosec} }^{ 2 }\left( { 90 }^{ o }-\theta \right) -{ \tan }^{ 2 }\theta
is :
Report Question
0%
2
0%
3
0%
0
0%
1
Explanation
The value of
\text{cosec} ^2(90-\theta)-\tan ^2\theta
is
=\displaystyle { \sec }^{ 2 }\theta -{ \tan }^{ 2 }\theta
=\dfrac { 1 }{ { \cos }^{ 2 }\theta } -\dfrac { { \sin }^{ 2 }\theta }{ { \cos }^{ 2 }\theta } =\dfrac { 1-{ \sin }^{ 2 }\theta }{ { \cos }^{ 2 }\theta }
=\dfrac { { \cos }^{ 2 }\theta }{ { \cos }^{ 2 }\theta }
=1
Find the value of
\displaystyle \cos { \left( { 90 }^{ o }-A \right) } \tan { \left( { 90 }^{ o }-A \right) } \sec { \left( { 90 }^{ o }-A \right) }
Report Question
0%
\displaystyle \cot{ A }
0%
\displaystyle \tan { A }
0%
\displaystyle \cos { A }
0%
\displaystyle \text{cosec }A
Explanation
\displaystyle \cos { \left( { 90 }^{ o }-A \right) } .\tan { \left( { 90 }^{ o }-A \right) } \sec { \left( { 90 }^{ o }-A \right) }
=\displaystyle \sin { A } \times \cot{ A }\times \text{cosec} A
.....
[\because \cos(90^{o} - \theta)=\sin \theta, \tan(90^{o}-\theta)=\cot \theta, \sec(90^{o}-\theta)=\text{cosec} \theta]
=\sin A \times \dfrac{\cos A}{\sin A}\times \dfrac{1}{\sin A}
=\dfrac{\cos A}{\sin A}=\cot A
Hence, option A is correct.
The value of
\displaystyle \frac { \sin { { 60 }^{ o } } }{ { \cos }^{ 2 }{ 45 }^{ o } } -\cot{ { 30 }^{ o } }+5\cos { { 90 }^{ o } }
is :
Report Question
0%
0
0%
1
0%
2
0%
\displaystyle \frac { 1 }{ 2 }
Explanation
\displaystyle \frac { \sin { { 60 }^{ o } } }{ { \cos }^{ 2 }{ 45 }^{ o } } -\cot{ { 30 }^{ o } }+5\cos { { 90 }^{ o } }
=\displaystyle \frac { \frac { \sqrt { 3 } }{ 2 } }{ \frac { 1 }{ 2 } } -\sqrt { 3 } +0=\sqrt { 3 } -\sqrt { 3 } =0
What is the value of
\displaystyle { \sin }^{ 2 }{ 35 }^{ o }+{ \sin }^{ 2 }{ 55 }^{ o }
?
Report Question
0%
0
0%
1
0%
\displaystyle \frac { 1 }{ 2 }
0%
2
Explanation
The value of
\displaystyle { \sin }^{ 2 }{ 35 }^{ o }+{ \sin }^{ 2 }\left( { 90 }^{ o }-{ 35 }^{ o } \right)
\displaystyle ={ \sin }^{ 2 }{ 35 }^{ o }+{ \cos }^{ 2 }{ 35 }^{ o }=1
\displaystyle \left[ \because { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1 \right]
If
\displaystyle \theta ={ 45 }^{ o }
, then
\displaystyle2 \sin { \theta } cos{ \theta }
is :
Report Question
0%
0
0%
1
0%
2
0%
None of these
Explanation
Given,
\theta=45^o
Therefore, value of
\displaystyle2 \sin { \theta } cos{ \theta }
is
=\displaystyle 2*\sin \left( { 45 }^{ o } \right) cos {45^0}
=2*(1/2)
=1
If
\displaystyle \frac { x\text{ cosec }^{ 2 }{ 30 }^{ o }{ \sec }^{ 2 }{ 45 }^{ o } }{ 8{ \cos }^{ 2 }{ 45 }^{ o }{ \sin }^{ 2 }{ 90 }^{ o } } ={ \tan }^{ 2 }{ 60 }^{ o }-{ \tan }^{ 2 }{ 45 }^{ o }
, then
x
is :
Report Question
0%
1
0%
-1
0%
2
0%
0
Explanation
\displaystyle \frac { { x\left( 2 \right) }^{ 2 }\times { \left( \sqrt { 2 } \right) }^{ 2 } }{ { 8\left( \dfrac { 1 }{ \sqrt { 2 } } \right) }^{ 2 }\times { \sin }^{ 2 }\theta } ={ \left( \sqrt { 3 } \right) }^{ 2 }-{ \left( 1 \right) }^{ 2 }
\displaystyle \frac { 8x }{ 8\times \dfrac { 1 }{ 2 } \times 1 } =3-1=2
\Rightarrow \displaystyle 2x=2
\Rightarrow \displaystyle x=1
Evaluate:
\displaystyle \sin { { 40 }^{ o } } .\sec{ { 50 }^{ o } }-\cfrac { \tan { { 40 }^{ o } } }{ \cot { { 50 }^{ o } } } +1
Report Question
0%
0
0%
1
0%
-1
0%
2
Explanation
\displaystyle \sin { { 40 }^{ o } } \times \sec { \left( { 90 }^{ o }-{ 40 }^{ o } \right) -\frac { \tan { { 40 }^{ o } } }{ \cot { \left( { 90 }^{ o }-{ 40 }^{ o } \right) } } } +1
\displaystyle =\sin { { 40 }^{ o } } \times cosec{ 40 }^{ o }-\frac { \tan { { 40 }^{ o } } }{ \tan { { 40 }^{ o } } } +1
\displaystyle =1-1+1=1
The value of
\displaystyle { \cos }^{ 2 }\left( { 90 }^{ o }-\theta \right) +{ \cos }^{ 2 }\theta
is :
Report Question
0%
3
0%
0
0%
2
0%
1
Explanation
The value of
\cos^2(90^o-\theta)+\cos^2\theta
is
=\sin^2\theta+\cos^2\theta
=1
The value of tan
1^{\circ}
tan
2^{\circ}
tan
3^{\circ}
\times..........\times
tan
89^{\circ}
is
Report Question
0%
0
0%
1
0%
2
0%
\dfrac {1}{2}
Explanation
\tan 1^{\circ} \tan 2^{\circ} \tan3^{\circ}\times..........\times \tan 89^{\circ}
= (\tan 1^{\circ} \tan89^{\circ})( \tan 2^{\circ} \tan 88^{\circ}) \times....\times \tan 45^{\circ}
= (\tan 1^{\circ} \cot1^{\circ})( \tan 2^{\circ} \cot2^{\circ})\times ...\times \tan45^{\circ}
[\because \tan \theta=\cot (90^{\circ}-\theta)
and
\tan \theta \times \cot \theta=1 ]
=1
The value of
\displaystyle \frac { \cos { { 75 }^{ o } } }{ \sin { { 15 }^{ o } } } +\frac { \sin { { 12 }^{ o } } }{ \cos { { 78 }^{ o } } } -\frac { \cos { { 18 }^{ o } } }{ \sin { { 72 }^{ o } } }
is :
Report Question
0%
0
0%
2
0%
3
0%
1
Explanation
we have,
\displaystyle \cos { { 75 }^{ o } } =\cos { \left( { 90 }^{ o }-{ 15 }^{ o } \right) = } \sin { { 15 }^{ o } }
\displaystyle \sin { { 12 }^{ o } } =\sin { \left( { 90 }^{ o }-{ 78 }^{ o } \right) } =\cos { { 78 }^{ o } }
\displaystyle \cos { { 18 }^{ o } } =\cos { \left( { 90 }^{ o }-{ 72 }^{ o } \right) } =\sin { { 72 }^{ o } }
\displaystyle \therefore \quad \frac { \cos { { 75 }^{ o } } }{ \sin { { 15 }^{ o } } } +\frac { \sin { { 12 }^{ o } } }{ \cos { { 78 }^{ o } } } -\frac { \cos { { 18 }^{ o } } }{ \sin { { 72 }^{ o } } }
\displaystyle =\frac { \sin { { 15 }^{ o } } }{ \sin { { 15 }^{ o } } } +\frac { \cos { { 78 }^{ o } } }{ \cos { { 78 }^{ o } } } -\frac { \sin { { 72 }^{ o } } }{ \sin { { 72 }^{ o } } }
\displaystyle =1+1-1=1
Hence, option D is correct.
The value of
\displaystyle \frac { \cos { { 70 }^{ o } } }{ \sin { { 20 }^{ o } } } +\frac { \cos { { 59 }^{ o } } }{ \sin { { 31 }^{ o } } } -8{ \sin }^{ 2 }{ 30 }^{ o }
is :
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
The value of
\displaystyle \frac { \cos { { 70 }^{ o } } }{ \sin { { 20 }^{ o } } } +\frac { \cos { { 59 }^{ o } } }{ \sin { { 31 }^{ o } } } -8{ \sin }^{ 2 }{ 30 }^{ o }
is
\displaystyle =\frac { \cos { \left( { 90 }^{ o }-{ 20 }^{ o } \right) } }{ \sin { { 20 }^{ o } } } +\frac { \cos { \left( { 90 }^{ o }-{ 31 }^{ o } \right) } }{ \sin { { 31 }^{ o } } } -{ 8\left( \frac { 1 }{ 2 } \right) }^{ 2 }
\displaystyle =\frac { \sin { { 20 }^{ o } } }{ \sin { { 20 }^{ o } } } +\frac { \sin { { 31 }^{ o } } }{ \sin { { 31 }^{ o } } } -8\times \frac { 1 }{ 4 }
\displaystyle =1+1-2=0
If
\displaystyle \sin \left ( A+B \right ) =\frac{\sqrt{3}}{2}
and
\displaystyle \cot \left ( A-B \right )=1
, then find
A
Report Question
0%
\displaystyle 27\frac{1^{\circ}}{2}
0%
\displaystyle 35\frac{1^{\circ}}{2}
0%
\displaystyle 52\frac{1^{\circ}}{2}
0%
\displaystyle 55\frac{1^{\circ}}{2}
Explanation
Given,
\sin(A+B) = \frac {\sqrt{3}}{2}
\Rightarrow A +B = 60^o
-(1)
And
\cot(A-B) = 1
\Rightarrow A-B = 45^o
---- (2)
On ddding equations (1) and (2), we get
\Rightarrow 2A = 105^0
\Rightarrow A = 52\dfrac{1}{2}^0
The value of
\displaystyle \frac { \sin { { 70 }^{ o } } }{ \cos { { 20 }^{ o } } } +\frac { \text{cosec }{ 20 }^{ o } }{ \sec { { 70 }^{ o } } } -2\cos { { 70 }^{ o } } \text{cosec }{ 20 }^{ o }
is :
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
The value of
\displaystyle \frac { \sin { { 70 }^{ o } } }{ \cos { { 20 }^{ o } } } +\frac { cosec{ 20 }^{ o } }{ \sec { { 70 }^{ o } } } -2\cos { { 70 }^{ o } } cosec{ 20 }^{ o }
is
\displaystyle =\frac { \sin { { 70 }^{ o } } }{ \cos { \left( { 90 }^{ o }-{ 70 }^{ o } \right) } } +\frac { cosec{ 20 }^{ o } }{ \sec { \left( { 90 }^{ o }-{ 20 }^{ o } \right) } } -\frac { 2\cos { { 70 }^{ o } } }{ \sin { { 20 }^{ o } } }
\displaystyle =\frac { \sin { { 70 }^{ o } } }{ \sin { { 70 }^{ o } } } +\frac { cosec{ 20 }^{ o } }{ cosec{ 20 }^{ o } } -\frac { 2\cos { { 70 }^{ o } } }{ \sin { \left( { 90 }^{ o }-{ 70 }^{ o } \right) } }
\displaystyle \left[ \because \quad \cos { \left( { 90 }^{ o }-\theta \right) } \sin { \theta } and\quad \sec { \left( { 90 }^{ o }-\theta \right) =cosec\theta } \right]
\displaystyle =1+1-\frac { 2\cos { { 70 }^{ o } } }{ \cos { { 70 }^{ o } } } =2-2=0
The value of
\displaystyle \frac { 2\cos { { 67 }^{ o } } }{ \sin { { 23 }^{ o } } } -\frac { \tan { { 40 }^{ o } } }{ \cot { { 50 }^{ o } } }
is :
Report Question
0%
1
0%
0
0%
4
0%
2
Explanation
\displaystyle \frac { 2\cos { { 67 }^{ o } } }{ \sin { { 23 }^{ o } } } -\frac { \tan { { 40 }^{ o } } }{ \cot { { 50 }^{ o } } }
\displaystyle =\frac { 2\cos { \left( { 90 }^{ o }-{ 23 }^{ o } \right) } }{ \sin { { 23 }^{ o } } } -\frac { \tan { \left( { 90 }^{ o }-{ 50 }^{ o } \right) } }{ \cot { { 50 }^{ o } } }
\displaystyle =\frac { 2\sin { { 23 }^{ o } } }{ \sin { { 23 }^{ o } } } -\frac { \cot { { 50 }^{ o } } }{ \cot { { 50 }^{ o } } }
\displaystyle \left[ \because \quad \cos { \left( { 90 }^{ o }-\theta \right) } =\sin { \theta } ,\tan { \left( { 90 }^{ o }-\theta \right) =\cot { \theta } } \right]
\displaystyle =2-1=1
The value of
\displaystyle \sec { { 41 }^{ o } } \sin { { 49 }^{ o }+ } \cos { { 49 }^{ o } } \text{cosec }{ 41 }^{ o }
is :
Report Question
0%
2
0%
1
0%
0
0%
3
Explanation
\displaystyle \sec { { 41 }^{ o } } \sin { { 49 }^{ o }+ } \cos { { 49 }^{ o } } cosec{ 41 }^{ o }
\displaystyle =\frac { \sin { { 49 }^{ o } } }{ \cos { { 41 }^{ o } } } +\frac { \cos { { 49 }^{ o } } }{ \sin { { 41 }^{ o } } }
\displaystyle =\frac { \sin { { 49 }^{ o } } }{ \cos { \left( { 90 }^{ o }-{ 49 }^{ o } \right) } } +\frac { \cos { { 49 }^{ o } } }{ \sin { \left( { 90 }^{ o }-{ 49 }^{ o } \right) } }
\displaystyle =\frac { \sin { { 49 }^{ o } } }{ \sin { { 49 }^{ o } } } +\frac { \cos { { 49 }^{ o } } }{ \cos { { 49 }^{ o } } }
\displaystyle =1+1=2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page