CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 7 - MCQExams.com

Evaluate: $$\cfrac { \sin { \theta  } \cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  }  }{ \cos { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \cos { \theta  } \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  }  }{ \sin { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \sin ^{ 2 }{ { 27 }^{ o } } +\sin ^{ 2 }{ { 63 }^{ o } }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\cos ^{ 2 }{ { 50 }^{ o } }  } $$
  • $$1$$
  • $$2$$
  • $$4$$
  • $$3$$
If $$\cos (\alpha+\beta)=0$$, then $$\sin (\alpha-\beta)$$, can be reduced to
  • $$\cos {\beta}$$
  • $$\cos {2\beta}$$
  • $$\cos {2\alpha}$$
  • $$\sin {2\alpha}$$
Evaluate: $$\cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ \sec ^{ 2 }{ { 50 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } }  } +2\text{cosec} ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } } $$
  • $$2$$
  • $$-1$$
  • $$-2$$
  • $$3$$
Evaluate:
$$\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } }  }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 }  } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } } $$
  • $$\cfrac{6}{5}$$
  • $$\cfrac{7}{3}$$
  • $$\cfrac{9}{2}$$
  • $$\cfrac{1}{4}$$
$$\displaystyle \cos ^{2}5^{\circ}+\cos ^{2}10^{\circ}+\cos ^{2}15^{\circ}+...+\cos ^{2}85^{\circ}=$$
  • $$6$$
  • $$8$$
  • $$9$$
  • $$\displaystyle 8\frac{1}{2}$$
$$\displaystyle \tan ^{2}B-\sin^{2} B$$ is equal to
  • $$\displaystyle \sec ^{2}B$$
  • $$\displaystyle 1+\cos ^{2}B$$
  • $$\displaystyle \tan ^{2}B\sin ^{2}B$$
  • $$\displaystyle \sec ^{2}B-\sin ^{2}B$$
If $$\displaystyle \tan 32^0.\cot (90^0-\theta )=1$$ find $$\theta $$.
  • $$\displaystyle 58^{\circ}$$
  • $$\displaystyle 122^{\circ}$$
  • $$\displaystyle 32^{\circ}$$
  • $$\displaystyle 158^{\circ}$$
The value of $$\displaystyle \csc (65^0+\theta )-\sec (25^0-\theta )-\tan (55^0-\theta )+\cot (35^0+\theta )$$ is
  • $$0$$
  • $$-1$$
  • $$\displaystyle \theta +90$$
  • None of these
Find the value of 
$$\displaystyle 4\left( { \sin }^{ 4 }{ 30 }^{ o }+{ \cos }^{ 4 }{ 60 }^{ o } \right) -3\left( { \sin }^{ 2 }{ 45 }^{ o }-2{ \cos }^{ 2 }{ 45 }^{ o } \right) $$
  • $$1$$
  • $$2$$
  • $$0$$
  • $$3$$
If $$\displaystyle \sqrt{2}\cos A=1$$ then the value of $$\displaystyle \tan ^{4}A+\cot ^{4}A$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{3}$$
  • 2
  • 1
The value of $$\displaystyle \frac{2\sin 67^{\circ}}{\cos 23^{\circ}}-\frac{\cot 40^{\circ}}{\tan 50^{\circ}}$$
  • 0
  • 1
  • -1
  • None
Evaluate: $$\displaystyle 3{\cot }^{ 2 }{ 60 }^{ o }+{ \sec }^{ 4 }{ 45 }^{ o }-{ \tan }^{ 2 }{ 60 }^{ o }$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
The value of $$tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;89^{\circ}$$ is
  • $$1$$
  • $$0$$
  • $$\infty$$
  • $$\displaystyle\frac{1}{2}$$
The value of $$\displaystyle \tan { { 5 }^{ o } } .\tan { { 85 }^{ o } } .\tan { { 31 }^{ o } } .\tan { { 5 }9^{ o } } .\tan { { 45 }^{ o } } $$ is :
  • $$0$$
  • $$2$$
  • $$1$$
  • $$\displaystyle \frac { 1 }{ 2 } $$
If $$\displaystyle 5\sin { A } =3$$, then the value of $$\displaystyle { \sec }^{ 2 }A-{ \tan }^{ 2 }A$$ is :
  • 0
  • 5
  • 3
  • 1
The value of  $$\displaystyle { \text{cosec} }^{ 2 }\left( { 90 }^{ o }-\theta  \right) -{ \tan }^{ 2 }\theta $$ is :
  • $$2$$
  • $$3$$
  • $$0$$
  • $$1$$
Find the value of $$\displaystyle \cos { \left( { 90 }^{ o }-A \right)  } \tan { \left( { 90 }^{ o }-A \right)  } \sec { \left( { 90 }^{ o }-A \right)  } $$
  • $$\displaystyle \cot{ A }$$
  • $$\displaystyle \tan { A } $$
  • $$\displaystyle \cos { A } $$
  • $$\displaystyle \text{cosec }A$$
The value of $$\displaystyle \frac { \sin { { 60 }^{ o } }  }{ { \cos }^{ 2 }{ 45 }^{ o } } -\cot{ { 30 }^{ o } }+5\cos { { 90 }^{ o } } $$ is :
  • $$0$$
  • $$1$$
  • $$2$$
  • $$\displaystyle \frac { 1 }{ 2 } $$
What is the value of $$\displaystyle { \sin }^{ 2 }{ 35 }^{ o }+{ \sin }^{ 2 }{ 55 }^{ o }$$ ?
  • $$0$$
  • $$1$$
  • $$\displaystyle \frac { 1 }{ 2 } $$
  • $$2$$
If  $$\displaystyle \theta ={ 45 }^{ o }$$, then $$\displaystyle2 \sin { \theta  } cos{ \theta }$$ is :
  • $$0$$
  • $$1$$
  • $$2$$
  • None of these
If $$\displaystyle \frac { x\text{ cosec }^{ 2 }{ 30 }^{ o }{ \sec }^{ 2 }{ 45 }^{ o } }{ 8{ \cos }^{ 2 }{ 45 }^{ o }{ \sin }^{ 2 }{ 90 }^{ o } } ={ \tan }^{ 2 }{ 60 }^{ o }-{ \tan }^{ 2 }{ 45 }^{ o }$$, then $$x$$ is :
  • $$1$$
  • $$-1$$
  • $$2$$
  • $$0$$
Evaluate: $$\displaystyle \sin { { 40 }^{ o } } .\sec{ { 50 }^{ o } }-\cfrac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } +1$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
The value of  $$\displaystyle { \cos }^{ 2 }\left( { 90 }^{ o }-\theta  \right) +{ \cos }^{ 2 }\theta $$ is :
  • 3
  • 0
  • 2
  • 1
The value of tan $$1^{\circ}$$ tan $$2^{\circ}$$ tan $$3^{\circ}$$$$\times..........\times$$tan $$89^{\circ}$$ is
  • $$0$$
  • $$1$$
  • $$2$$
  • $$\dfrac {1}{2}$$
The value of $$\displaystyle \frac { \cos { { 75 }^{ o } }  }{ \sin { { 15 }^{ o } }  } +\frac { \sin { { 12 }^{ o } }  }{ \cos { { 78 }^{ o } }  } -\frac { \cos { { 18 }^{ o } }  }{ \sin { { 72 }^{ o } }  } $$ is :
  • 0
  • 2
  • 3
  • 1
The value of $$\displaystyle \frac { \cos { { 70 }^{ o } }  }{ \sin { { 20 }^{ o } }  } +\frac { \cos { { 59 }^{ o } }  }{ \sin { { 31 }^{ o } }  } -8{ \sin }^{ 2 }{ 30 }^{ o }$$ is :
  • $$1$$
  • $$2$$
  • $$0$$
  • $$3$$
If $$\displaystyle \sin \left ( A+B \right ) =\frac{\sqrt{3}}{2}$$ and $$\displaystyle \cot \left ( A-B \right )=1$$, then find $$A$$
  • $$\displaystyle 27\frac{1^{\circ}}{2}$$
  • $$\displaystyle 35\frac{1^{\circ}}{2}$$
  • $$\displaystyle 52\frac{1^{\circ}}{2}$$
  • $$\displaystyle 55\frac{1^{\circ}}{2}$$
The value of $$\displaystyle \frac { \sin { { 70 }^{ o } }  }{ \cos { { 20 }^{ o } }  } +\frac { \text{cosec }{ 20 }^{ o } }{ \sec { { 70 }^{ o } }  } -2\cos { { 70 }^{ o } } \text{cosec }{ 20 }^{ o }$$ is :
  • $$1$$
  • $$2$$
  • $$0$$
  • $$3$$
The value of $$\displaystyle \frac { 2\cos { { 67 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } $$ is :
  • $$1$$
  • $$0$$
  • $$4$$
  • $$2$$
The value of $$\displaystyle \sec { { 41 }^{ o } } \sin { { 49 }^{ o }+ } \cos { { 49 }^{ o } } \text{cosec }{ 41 }^{ o }$$ is :
  • $$2$$
  • $$1$$
  • $$0$$
  • $$3$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers