Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 7 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 7
Evaluate:
sin
θ
cos
θ
sin
(
90
o
−
θ
)
cos
(
90
o
−
θ
)
+
cos
θ
sin
θ
cos
(
90
o
−
θ
)
sin
(
90
o
−
θ
)
+
sin
2
27
o
+
sin
2
63
o
cos
2
40
o
+
cos
2
50
o
Report Question
0%
1
0%
2
0%
4
0%
3
Explanation
sin
θ
cos
θ
sin
(
90
o
−
θ
)
cos
(
90
o
−
θ
)
=
sin
θ
cos
θ
cos
θ
sin
θ
.
.
.
.
(
i
)
cos
θ
sin
θ
cos
(
90
o
−
θ
)
sin
(
90
o
−
θ
)
=
cos
θ
sin
θ
sin
θ
cos
θ
.
.
.
.
.
.
(
i
i
)
sin
2
27
o
+
sin
2
63
o
cos
2
40
o
+
cos
2
50
o
=
sin
2
27
o
+
sin
2
(
90
o
−
27
o
)
cos
2
40
o
+
cos
2
(
90
o
−
40
o
)
=
sin
2
27
o
cos
2
27
o
cos
2
40
o
+
sin
2
40
o
=
1
1
Using
(
i
)
,
(
i
i
)
,
(
i
i
i
)
we get
sin
θ
sin
θ
+
cos
θ
cos
θ
+
1
sin
2
θ
+
cos
2
θ
+
1
=
1
+
1
=
2
If
cos
(
α
+
β
)
=
0
, then
sin
(
α
−
β
)
, can be reduced to
Report Question
0%
cos
β
0%
cos
2
β
0%
cos
2
α
0%
sin
2
α
Explanation
Step 1 : Use the triginometric identities for angle transformation
Given ,
cos
(
α
+
β
)
=
0
⇒
cos
(
α
+
β
)
=
cos
90
[
∵
cos
90
∘
=
0
]
⇒
α
+
β
=
90
⇒
α
=
90
−
β
∴
s
i
n
(
α
−
β
)
=
sin
(
90
−
2
β
)
=
cos
2
β
[
∵
sin
(
90
−
θ
)
=
cos
θ
]
Hence , option(B) is the correct answer
Evaluate:
cos
2
20
o
+
cos
2
70
o
sec
2
50
o
−
cot
2
40
o
+
2
cosec
2
58
o
−
2
cot
58
o
tan
32
o
−
4
tan
13
o
tan
37
o
tan
45
o
tan
53
o
tan
77
o
Report Question
0%
2
0%
−
1
0%
−
2
0%
3
Explanation
cos
2
20
o
+
cos
2
70
o
sec
2
50
o
+
cot
2
40
o
+
2
csc
2
58
o
−
2
cot
58
o
tan
32
o
−
4
tan
13
o
tan
37
o
tan
45
o
tan
53
o
tan
77
o
=
cos
2
(
90
o
−
70
o
)
+
cos
2
70
o
sec
2
(
90
o
−
40
o
)
+
cot
2
40
o
+
2
csc
2
58
o
−
2
cot
58
o
tan
(
90
o
−
58
o
)
−
4
(
tan
13
o
tan
77
o
)
(
tan
37
o
tan
53
o
)
tan
45
o
=
sin
2
70
o
+
cos
2
70
o
c
o
sec
2
40
o
−
cot
2
40
o
+
2
(
csc
2
58
o
−
cot
2
58
o
)
−
4
[
tan
(
90
o
−
77
o
)
tan
77
o
]
[
tan
(
90
o
−
53
o
)
tan
53
o
]
[
1
]
=
1
1
+
2
−
4
=
−
1
Evaluate:
sec
2
54
o
−
cot
2
36
o
c
o
sec
2
57
o
−
tan
2
33
o
+
2
sin
2
38
o
sec
2
52
o
−
sin
2
45
o
+
2
√
3
tan
17
o
tan
60
o
tan
73
o
Report Question
0%
6
5
0%
7
3
0%
9
2
0%
1
4
Explanation
sec
2
54
o
−
cot
2
36
o
c
o
sec
2
57
o
−
tan
2
33
o
+
2
sin
2
38
o
sec
2
52
o
−
sin
2
45
o
+
2
√
3
tan
17
o
tan
60
o
tan
73
o
⇒
sec
2
(
90
o
−
36
o
)
−
cot
2
36
o
c
o
sec
2
(
90
o
−
33
o
)
−
tan
2
33
o
+
2
sin
2
38
o
sec
2
(
90
o
−
38
o
)
−
sin
2
45
o
+
2
√
3
tan
(
90
o
−
73
o
)
tan
73
o
tan
60
o
⇒
c
o
sec
2
36
o
−
cot
2
36
o
sec
2
33
o
−
tan
2
33
o
+
2
sin
2
38
o
c
o
sec
2
38
o
−
(
1
√
2
)
2
+
2
√
3
cot
73
o
tan
73
o
×
√
3
⇒
1
1
+
2
sin
2
38
o
×
1
sin
2
38
o
−
1
2
+
2
√
3
×
1
tan
73
o
×
tan
73
o
×
√
3
[
∵
c
o
sec
2
0
−
cot
2
0
=
1
,
sec
2
0
−
tan
2
0
=
1
]
⇒
1
+
2
−
1
2
+
2
=
5
−
1
2
⇒
9
2
cos
2
5
∘
+
cos
2
10
∘
+
cos
2
15
∘
+
.
.
.
+
cos
2
85
∘
=
Report Question
0%
6
0%
8
0%
9
0%
8
1
2
Explanation
(
cos
2
5
∘
+
cos
2
85
∘
)
+
(
cos
2
10
+
cos
2
80
∘
)
+
⋅
⋅
⋅
+
cos
2
45
∘
+
⋅
⋅
⋅
=
(
cos
2
5
∘
+
sin
2
5
∘
)
+
(
cos
2
10
∘
)
+
⋅
⋅
⋅
+
cos
2
45
∘
+
⋅
⋅
⋅
[
u
s
i
n
g
cos
(
90
∘
−
θ
)
=
sin
θ
]
=
1
+
1
+
1
+
(
8
t
i
m
e
s
)
+
1
2
=
8
1
2
tan
2
B
−
sin
2
B
is equal to
Report Question
0%
sec
2
B
0%
1
+
cos
2
B
0%
tan
2
B
sin
2
B
0%
sec
2
B
−
sin
2
B
Explanation
tan
2
B
−
sin
2
B
=
sin
2
B
cos
2
B
−
sin
2
B
=
sin
2
B
−
sin
2
B
cos
2
B
cos
2
B
=
sin
2
B
(
1
−
cos
2
B
cos
2
B
)
=
sin
2
B
(
sin
2
B
cos
2
B
)
=
sin
2
B
tan
2
B
If
tan
32
0
.
cot
(
90
0
−
θ
)
=
1
find
θ
.
Report Question
0%
58
∘
0%
122
∘
0%
32
∘
0%
158
∘
Explanation
Given,
tan
32
0
.
cot
(
90
0
−
θ
)
=
1
⇒
tan
32
0
=
1
cot
(
90
0
−
θ
)
⇒
tan
32
0
=
tan
(
90
0
−
θ
)
⇒
(
90
0
−
θ
)
=
32
0
⇒
θ
=
90
0
−
32
0
=
58
0
Option A is correct.
The value of
csc
(
65
0
+
θ
)
−
sec
(
25
0
−
θ
)
−
tan
(
55
0
−
θ
)
+
cot
(
35
0
+
θ
)
is
Report Question
0%
0
0%
−
1
0%
θ
+
90
0%
None of these
Explanation
Given,
csc
(
65
∘
+
θ
)
−
sec
(
25
−
θ
)
−
tan
(
55
−
θ
)
+
cot
(
35
+
θ
)
=
csc
(
90
∘
−
25
∘
+
θ
)
−
sec
(
25
∘
−
θ
)
−
tan
(
55
∘
−
θ
)
+
cot
(
90
∘
−
55
∘
+
θ
)
=
csc
(
90
∘
−
(
25
∘
−
θ
)
)
−
sec
(
25
∘
−
θ
)
−
tan
(
55
∘
−
θ
)
+
cot
(
90
∘
−
(
55
∘
−
θ
)
)
=
sec
(
25
∘
−
θ
)
−
sec
(
25
∘
−
θ
)
−
tan
(
55
∘
−
θ
)
+
tan
(
55
∘
−
θ
)
=
0
Find the value of
4
(
sin
4
30
o
+
cos
4
60
o
)
−
3
(
sin
2
45
o
−
2
cos
2
45
o
)
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
4
(
s
i
n
4
30
0
+
c
o
s
4
60
0
)
−
3
(
s
i
n
2
45
0
−
2
c
o
s
2
45
0
)
Put the value of
sin
and
cos
we get:
=
[
(
1
2
)
2
+
(
1
2
)
4
]
−
3
[
(
1
√
2
)
2
−
2
(
1
√
2
)
2
]
=
4
(
1
16
+
1
16
)
−
3
(
1
2
−
2
(
1
2
)
)
=
1
2
+
3
2
=
2
If
√
2
cos
A
=
1
then the value of
tan
4
A
+
cot
4
A
Report Question
0%
1
2
0%
1
3
0%
2
0%
1
Explanation
Since,
√
2
cos
A
=
1
⇒
cos
A
=
1
√
2
Since,
cos
θ
=
base
hypotenuse
Here, base = 1 and hypotenuse =
√
2
using pythagoras
H
2
=
P
2
+
B
2
(
√
2
)
2
=
P
2
+
1
2
P
=
1
∴
tan
A
=
perpendicular
base
=
1
and
cot
A
=
base
perpendicular
=
1
∴
tan
4
A
+
cot
4
A
=
1
4
+
1
4
=
2
Option C is correct.
The value of
2
sin
67
∘
cos
23
∘
−
cot
40
∘
tan
50
∘
Report Question
0%
0
0%
1
0%
-1
0%
None
Explanation
2
sin
67
0
cos
23
0
−
cot
40
0
tan
50
0
=
2
sin
(
90
0
−
23
0
)
cos
23
0
−
cot
(
90
0
−
50
0
)
tan
50
0
=
2
cos
23
0
cos
23
0
−
tan
50
0
tan
50
0
=
2
−
1
=
1
Option B is correct.
Evaluate:
3
cot
2
60
o
+
sec
4
45
o
−
tan
2
60
o
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
Given that:
3
cot
2
60
o
+
sec
4
45
o
−
tan
2
60
∘
=
3
cot
2
(
90
o
−
30
o
)
+
sec
4
45
∘
−
tan
2
60
o
=
3
×
(
1
√
3
)
2
−
(
√
3
)
2
+
(
√
2
)
2
=
1
−
3
+
2
=
0
The value of
t
a
n
1
∘
t
a
n
2
∘
t
a
n
3
∘
.
.
.
.
t
a
n
89
∘
is
Report Question
0%
1
0%
0
0%
∞
0%
1
2
Explanation
t
a
n
1
∘
t
a
n
2
∘
t
a
n
3
∘
.
.
.
.
t
a
n
45
∘
.
.
.
.
.
t
a
n
87
∘
t
a
n
88
∘
t
a
n
89
∘
=
t
a
n
1
∘
t
a
n
2
∘
t
a
n
3
∘
.
.
.
.
.
t
a
n
45
∘
.
.
.
.
.
c
o
t
3
∘
c
o
t
2
∘
c
o
t
1
∘
=
1
The value of
tan
5
o
.
tan
85
o
.
tan
31
o
.
tan
5
9
o
.
tan
45
o
is :
Report Question
0%
0
0%
2
0%
1
0%
1
2
Explanation
The value of
tan
5
o
.
tan
85
o
.
tan
31
o
.
tan
59
o
.
tan
45
o
is
=
tan
(
90
−
85
)
o
.
tan
85
o
.
tan
(
90
−
59
)
o
.
tan
45
o
=
cot
85
o
.
tan
85
o
.
cot
59
o
.
tan
59
o
.
tan
45
o
=
tan
45
o
=
1
If
5
sin
A
=
3
, then the value of
sec
2
A
−
tan
2
A
is :
Report Question
0%
0
0%
5
0%
3
0%
1
Explanation
Given,
sin
A
=
3
5
=
p
h
∴
b
=
√
25
−
9
=
√
16
=
4
sec
A
=
h
b
=
5
4
,
tan
A
=
p
b
=
3
4
Therefore,
sec
2
A
−
tan
2
A
=
(
5
4
)
2
−
(
3
4
)
2
=
25
16
−
9
16
=
16
16
=
1
The value of
cosec
2
(
90
o
−
θ
)
−
tan
2
θ
is :
Report Question
0%
2
0%
3
0%
0
0%
1
Explanation
The value of
cosec
2
(
90
−
θ
)
−
tan
2
θ
is
=
sec
2
θ
−
tan
2
θ
=
1
cos
2
θ
−
sin
2
θ
cos
2
θ
=
1
−
sin
2
θ
cos
2
θ
=
cos
2
θ
cos
2
θ
=
1
Find the value of
cos
(
90
o
−
A
)
tan
(
90
o
−
A
)
sec
(
90
o
−
A
)
Report Question
0%
cot
A
0%
tan
A
0%
cos
A
0%
cosec
A
Explanation
cos
(
90
o
−
A
)
.
tan
(
90
o
−
A
)
sec
(
90
o
−
A
)
=
sin
A
×
cot
A
×
cosec
A
.....
[
∵
cos
(
90
o
−
θ
)
=
sin
θ
,
tan
(
90
o
−
θ
)
=
cot
θ
,
sec
(
90
o
−
θ
)
=
cosec
θ
]
=
sin
A
×
cos
A
sin
A
×
1
sin
A
=
cos
A
sin
A
=
cot
A
Hence, option A is correct.
The value of
sin
60
o
cos
2
45
o
−
cot
30
o
+
5
cos
90
o
is :
Report Question
0%
0
0%
1
0%
2
0%
1
2
Explanation
sin
60
o
cos
2
45
o
−
cot
30
o
+
5
cos
90
o
=
√
3
2
1
2
−
√
3
+
0
=
√
3
−
√
3
=
0
What is the value of
sin
2
35
o
+
sin
2
55
o
?
Report Question
0%
0
0%
1
0%
1
2
0%
2
Explanation
The value of
sin
2
35
o
+
sin
2
(
90
o
−
35
o
)
=
sin
2
35
o
+
cos
2
35
o
=
1
[
∵
sin
2
θ
+
cos
2
θ
=
1
]
If
θ
=
45
o
, then
2
sin
θ
c
o
s
θ
is :
Report Question
0%
0
0%
1
0%
2
0%
None of these
Explanation
Given,
θ
=
45
o
Therefore, value of
2
sin
θ
c
o
s
θ
is
=
2
∗
sin
(
45
o
)
c
o
s
45
0
=
2
∗
(
1
/
2
)
=
1
If
x
cosec
2
30
o
sec
2
45
o
8
cos
2
45
o
sin
2
90
o
=
tan
2
60
o
−
tan
2
45
o
, then
x
is :
Report Question
0%
1
0%
−
1
0%
2
0%
0
Explanation
x
(
2
)
2
×
(
√
2
)
2
8
(
1
√
2
)
2
×
sin
2
θ
=
(
√
3
)
2
−
(
1
)
2
8
x
8
×
1
2
×
1
=
3
−
1
=
2
⇒
2
x
=
2
⇒
x
=
1
Evaluate:
sin
40
o
.
sec
50
o
−
tan
40
o
cot
50
o
+
1
Report Question
0%
0
0%
1
0%
−
1
0%
2
Explanation
sin
40
o
×
sec
(
90
o
−
40
o
)
−
tan
40
o
cot
(
90
o
−
40
o
)
+
1
=
sin
40
o
×
c
o
s
e
c
40
o
−
tan
40
o
tan
40
o
+
1
=
1
−
1
+
1
=
1
The value of
cos
2
(
90
o
−
θ
)
+
cos
2
θ
is :
Report Question
0%
3
0%
0
0%
2
0%
1
Explanation
The value of
cos
2
(
90
o
−
θ
)
+
cos
2
θ
is
=
sin
2
θ
+
cos
2
θ
=
1
The value of tan
1
∘
tan
2
∘
tan
3
∘
×
.
.
.
.
.
.
.
.
.
.
×
tan
89
∘
is
Report Question
0%
0
0%
1
0%
2
0%
1
2
Explanation
tan
1
∘
tan
2
∘
tan
3
∘
×
.
.
.
.
.
.
.
.
.
.
×
tan
89
∘
=
(
tan
1
∘
tan
89
∘
)
(
tan
2
∘
tan
88
∘
)
×
.
.
.
.
×
tan
45
∘
=
(
tan
1
∘
cot
1
∘
)
(
tan
2
∘
cot
2
∘
)
×
.
.
.
×
tan
45
∘
[
∵
tan
θ
=
cot
(
90
∘
−
θ
)
and
tan
θ
×
cot
θ
=
1
]
=
1
The value of
cos
75
o
sin
15
o
+
sin
12
o
cos
78
o
−
cos
18
o
sin
72
o
is :
Report Question
0%
0
0%
2
0%
3
0%
1
Explanation
we have,
cos
75
o
=
cos
(
90
o
−
15
o
)
=
sin
15
o
sin
12
o
=
sin
(
90
o
−
78
o
)
=
cos
78
o
cos
18
o
=
cos
(
90
o
−
72
o
)
=
sin
72
o
∴
cos
75
o
sin
15
o
+
sin
12
o
cos
78
o
−
cos
18
o
sin
72
o
=
sin
15
o
sin
15
o
+
cos
78
o
cos
78
o
−
sin
72
o
sin
72
o
=
1
+
1
−
1
=
1
Hence, option D is correct.
The value of
cos
70
o
sin
20
o
+
cos
59
o
sin
31
o
−
8
sin
2
30
o
is :
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
The value of
cos
70
o
sin
20
o
+
cos
59
o
sin
31
o
−
8
sin
2
30
o
is
=
cos
(
90
o
−
20
o
)
sin
20
o
+
cos
(
90
o
−
31
o
)
sin
31
o
−
8
(
1
2
)
2
=
sin
20
o
sin
20
o
+
sin
31
o
sin
31
o
−
8
×
1
4
=
1
+
1
−
2
=
0
If
sin
(
A
+
B
)
=
√
3
2
and
cot
(
A
−
B
)
=
1
, then find
A
Report Question
0%
27
1
∘
2
0%
35
1
∘
2
0%
52
1
∘
2
0%
55
1
∘
2
Explanation
Given,
sin
(
A
+
B
)
=
√
3
2
⇒
A
+
B
=
60
o
-(1)
And
cot
(
A
−
B
)
=
1
⇒
A
−
B
=
45
o
---- (2)
On ddding equations (1) and (2), we get
⇒
2
A
=
105
0
⇒
A
=
52
1
2
0
The value of
sin
70
o
cos
20
o
+
cosec
20
o
sec
70
o
−
2
cos
70
o
cosec
20
o
is :
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
The value of
sin
70
o
cos
20
o
+
c
o
s
e
c
20
o
sec
70
o
−
2
cos
70
o
c
o
s
e
c
20
o
is
=
sin
70
o
cos
(
90
o
−
70
o
)
+
c
o
s
e
c
20
o
sec
(
90
o
−
20
o
)
−
2
cos
70
o
sin
20
o
=
sin
70
o
sin
70
o
+
c
o
s
e
c
20
o
c
o
s
e
c
20
o
−
2
cos
70
o
sin
(
90
o
−
70
o
)
[
∵
cos
(
90
o
−
θ
)
sin
θ
a
n
d
sec
(
90
o
−
θ
)
=
c
o
s
e
c
θ
]
=
1
+
1
−
2
cos
70
o
cos
70
o
=
2
−
2
=
0
The value of
2
cos
67
o
sin
23
o
−
tan
40
o
cot
50
o
is :
Report Question
0%
1
0%
0
0%
4
0%
2
Explanation
2
cos
67
o
sin
23
o
−
tan
40
o
cot
50
o
=
2
cos
(
90
o
−
23
o
)
sin
23
o
−
tan
(
90
o
−
50
o
)
cot
50
o
=
2
sin
23
o
sin
23
o
−
cot
50
o
cot
50
o
[
∵
cos
(
90
o
−
θ
)
=
sin
θ
,
tan
(
90
o
−
θ
)
=
cot
θ
]
=
2
−
1
=
1
The value of
sec
41
o
sin
49
o
+
cos
49
o
cosec
41
o
is :
Report Question
0%
2
0%
1
0%
0
0%
3
Explanation
sec
41
o
sin
49
o
+
cos
49
o
c
o
s
e
c
41
o
=
sin
49
o
cos
41
o
+
cos
49
o
sin
41
o
=
sin
49
o
cos
(
90
o
−
49
o
)
+
cos
49
o
sin
(
90
o
−
49
o
)
=
sin
49
o
sin
49
o
+
cos
49
o
cos
49
o
=
1
+
1
=
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page