Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 8 - MCQExams.com

The value of 2cos67osin23otan40ocot50osin90o is :
  • 1
  • 0
  • 2
  • 4
The value of   sinθcosθsinθcos(90oθ)cosθsec(90oθ)cosθsin(90oθ)sinθcosec (90oθ) is :
  • 1
  • 2
  • 2
  • 0
If sec2A=cosec (A42) where 2A is acute angle, then value of A is
  • 44
  • 22
  • 21
  • 66
Find the value of 4cos2600+4tan2450cosec2 300
  • 0
  • 2
  • 1
  • 12
If  sinθ=12 and  0<θ<90 then  cos2θ= _____
  • 0
  • 1
  • 12
  • 32
If cosec(20+x)=sec(50+x) the value of x is 
  • 10
  • 20
  • 30
  • 40
The value of 4(sin430+cos430)3(cos245+sin290)  is:
  • 12
  • 2
  • 2
  • 12
\displaystyle  \sin^{2} 85^{\circ} + \sin ^{2}5^{\circ} = ______
  • 0
  • 1
  • \dfrac12
  • \dfrac23
If \displaystyle \sin ^{4}\theta +\cos ^{4}\theta =\dfrac{1}{2} then the value of  \displaystyle \sin \theta \cos \theta   is  
  • \displaystyle \pm \frac{1}{8}
  • \displaystyle \pm \frac{1}{4}
  • \displaystyle \pm 1
  • \displaystyle \pm \frac{1}{2}
If \displaystyle  \sqrt{3}\tan \theta =3\sin \theta then the value of \displaystyle  \sin ^{2}\theta -\cos ^{2}\theta is
  • 2
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{3}
  • 3
If \displaystyle \sin \Theta +\text{cosec }\Theta =2 find the value of \displaystyle \cot \Theta +\cos \Theta  
  • 0
  • \dfrac12
  • 1
  • 2
If \displaystyle X=\tan 1^{0}+\tan 2^{0}+........+\tan 45^{0} and \displaystyle y= -(\cot 46^{0}+\cot 47^{0}+.......+\cot 89^{0}) then find the value of (x + y).
  • 1
  • 0
  • -1
  • \displaystyle \dfrac {\sqrt{3}}{2}
\displaystyle \sec ^{4}\theta -\sec ^{2}\theta in terms of \displaystyle \tan \theta   is ___ 
  • \displaystyle \tan ^{4}\theta -\tan ^{2}\theta
  • \displaystyle \tan ^{4}\theta +\tan ^{2}\theta
  • \displaystyle \tan ^{2}\theta -\tan ^{4}\theta
  • None of these
If \displaystyle \sin \left ( A+B \right )=\dfrac{\sqrt{3}}{2} and \displaystyle \cot  \left ( A-B \right )=\sqrt{3} then find the value of B.
  • \displaystyle 15^{\circ}
  • \displaystyle 30^{\circ}
  • \displaystyle 10^{\circ}
  • \displaystyle 20^{\circ}
If \displaystyle \cos \Theta _{1}+\cos \Theta _{2}+\cos \Theta _{3}=3, find \displaystyle \sin \Theta _{1}+\sin \Theta _{2}+\sin \Theta _{3}.
  • 0
  • 1
  • 2
  • 3
The simplified value of
\displaystyle \text{cosec} ^{2}\alpha \left ( 1+\frac{1}{\sec \alpha } \right )\left (1-\frac{1}{\sec \alpha }  \right ) is _____
  • 1
  • 0
  • 2
  • -1
Value of \left(\tan{30^0}\csc{60^0} + \tan{60^0}\sec{30^0}\right) is 
  • 2\dfrac{1}{3}
  • 2\dfrac{2}{3}
  • 3\dfrac{1}{3}
  • \dfrac{7}{4}
The value of  \displaystyle \sin ^{2}5^{\circ}+ \sin ^{2}10^{\circ}+\sin ^{2}15^{\circ}......+\sin ^{2}90^{\circ} is equal to
  • \dfrac{17}2
  • \dfrac{19}2
  • \dfrac{21}2
  • \dfrac{23}2
If \displaystyle\tan \theta +\cot \theta =2 find the value of \displaystyle \tan ^{1025}\theta +\cot ^{1025}\theta
  • 0
  • 1
  • 2
  • \dfrac12
If \displaystyle \tan \theta -\cot \theta =7   find the value of \displaystyle \tan ^{3}\theta -\cot^{3} \theta
  • 284
  • 296
  • 345
  • 364
If \displaystyle 3\cos ^{2}A=\cos 60^{\circ}+\sin ^{2}45^{\circ} then find the value of \displaystyle \sec ^{2}A.
  • 1
  • 0
  • 2
  • 3
The simplified value of \displaystyle \left ( \frac{1-\sin \alpha }{\cos \alpha }+\frac{\cos \alpha }{1+\sin \alpha } \right )\left ( \sec \alpha +\frac{1}{\cot \alpha } \right ) is _____
  • 0
  • 1
  • 2
  • 3
If \displaystyle \text{cosec}\, \theta -\cot \theta =2, then find the value of \displaystyle \text{cosec} ^{2}\theta +\cot^{2} \theta.
  • \displaystyle \frac{8}{15}
  • \displaystyle \frac{15}{8}
  • \displaystyle \frac{8}{17}
  • \displaystyle \frac{17}{8}
In a right angled \triangle ABD, \angle B = 60^o and \angle A = 30^o.
Then, \cos{60^o} =

453618_dbad8db06b4449d498dfa854213316b9.PNG
  • 2
  • \dfrac{1}{2}
  • \sqrt{3}
  • \dfrac{1}{\sqrt{3}}
In a right angled \triangle ABD, in which \angle B=60^o and \angle A=30^o.
Then \tan { 30^o } is equal to

453664_e38aec4bdc7b4015aa167bb01989a95d.png
  • \dfrac { \sqrt { 3 } }{ 2 }
  • \dfrac { 1 }{ \sqrt { 3 } }
  • \dfrac { 2 }{ \sqrt { 3 } }
  • \sqrt { 3 }
In a right angled \triangle ABD, \angle B = 60^o and \angle A = 30^o, then \sin{60^o} =
453612_a1edcf1fef6d407c9658b897f5bb79d8.png
  • \sqrt{3}
  • \dfrac{1}{\sqrt{3}}
  • \dfrac{\sqrt{3}}{2}
  • \dfrac{2}{\sqrt{3}}
In a right angled triangle, \angle A = \theta is an acute angle.
Then, \cos{\theta} \times \sec{\theta} is equal to
  • 0
  • 1
  • -1
  • None of these
In a right angle \triangle ABD, in which \angle B = 60^o and \angle A = 30^o.
Then, \tan{60^o} is equal to

453628_67dd6b65c9e5484fae4d0f46c6a0c442.PNG
  • 2
  • \dfrac{1}{2}
  • \sqrt{3}
  • \dfrac{1}{\sqrt{3}}
In a right angle \triangle ABD,  \angle B=60^o and \angle A=30^o.
Then \csc{60^o} is equal to:

453641.png
  • \sqrt { 3 }
  • \dfrac { 2 }{ \sqrt { 3 } }
  • 2
  • \dfrac { 1 }{ \sqrt { 3 } }
If in a rectangular, the angle between a diagonal and a side is 30^o and the length of the diagonal is 8 cm, then the area of the rectangle is _____ .
  • 16\sqrt3 cm^2
  • 16 cm^2
  • \sqrt3 cm^2
  • 16/\sqrt3 cm^2
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers